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PREFACE

Op his Pamphlet embraces the subjects and principles, which, in
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Classes of the United States Military Academy during the past
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Calculus.

To the Officers of the U. S. Army, who have taught the

subject with me, I am greatly indebted for many of the methods

and demonstrations here presented.
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Gibson, and Alexander, for valuable assistance in preparing the

sheets for the printer.

Edgar W. Bass.

West Point, N. Y.,

March, 1887.



Greek Alphabet.

A a Alpha

B fi Beta

r y Gamma

A 8 Delta

E e Epsilon

Z C Zeta

H j] Eta

& $6 Theta

I i Iota

K u Kappa

A A Lambda

M m Mu

iV y Nu

S £ Xi

o Omicron

77 tt Pi

P p Rho

2" a 2, Sigma

T r Tau

T v Upsilon

cp Phi

X x Chi

W $ Psi

.Q a? Omega



DIFFERENTIAL CALCULUS.

CHAPTER I.

CONSTANTS, VARIABLES, AND FUNCTIONS.

1. In the Calculus quantities are divided into two general

classes, constants and variables,

A Constant is a quantity that has, or is supposed to have, a

definite fixed value.

A Variable is a quantity that is, or is supposed to be, continually

changing in value.

In general, constants are represented by the first letters of the

alphabet, and variables by the last; but they should not, therefore,

be confused with the known and unknown quantities of Algebra,

which, in general, are constants.

The same quantity may sometimes be either a variable or a

constant, depending upon the circumstances under which it is con-

sidered. Thus, in the equation of a curve, the coordinates of its

points are variables; but in the equation of a tangent to the curve,

the coordinates of the point of tangency are generally treated as

constants. It is, therefore, necessary to determine from the circum-

stances, or object in view, which quantities are to be regarded as

variables, and which as constants, in each discussion.

In general, any or all of the quantities represented by letters in

any mathematical expression or equation may have definite values

assigned to them, and be regarded as constants; or they may be

considered as changing in value, and treated as variables. Thus, in

the expression 47r; 2
, r is a constant if we suppose it to represent the

radius of a particular sphere; but if r is considered as changing in

value, it will be a variable. In the first case, 47ZT2
is a constant, and

measures the surface of a particular sphere; but when r is variable,
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47ZT2
is also variable, and represents the surface of any sphere no

matter how much it may increase or diminish. The formation of a

soap bubble illustrates the latter case.

It should not be understood, however, that we may in all cases

treat quantities as constants or variables at pleasure without affect-

ing the character of the magnitude represented by the expression or

equation. For example, n is generally assumed to represent the

ratio of the circumference of any circle to its rit&ius, which ratio is

invariable. If a different value be assigned to 7t
y
the expression

47rr2 will not measure the surface of a sphere whose radius is r.

In some cases variation in a quantity changes the dimensions of

the magnitude represented by the expression or equation; in others

it changes the position only; and again it may change the character

of the magnitude. Thus, if we suppose R to vary in the equation

(x— a)
2

-\-(y— J3)
2=R2

, we shall have a series of circles differing

in size; but by changing a or ft and not R the position only will

be affected.

By changing b2 within positive limits, the equation a2
y

2
-{-b

2x2=a2b2

represents different ellipses, but negative values for b2 cause the

equation to represent hyperbolas. In general, however, constants

are supposed to have fixed values in the same expression, unless for

a particular discussion it is otherwise stated.

Functions.

2. A quantity is a function of another quantity when its value

depends upon that of the second quantity. Thus, ^ax is a function

of 4, a, and x. In general, any mathematical expression which

contains a quantity' is a function of that quantity. If, however, a

quantity disappears from an expression by reduction or simplification

the expression is not a function of that quantity. Thus,

x2-\-(c-^-x) (c—x), —> and tan.* cot.*, are not functions of x.

3. A function of a single variable is one whose value depends

upon that of a single variable and varies with it. Thus,

-^—
4

» s/^x2
-f 2px> \og(a-\-x), sec*,

in which x is the only variable, are functions of a single variable.

Any function of a single variable is also a variable, and varies

simultaneously with the variable.
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4. The relation between a function of a variable and its variable

is one of mutual dependence. Any change in the value of one causes

a dependent variation in that of the other. Either may, therefore,

be regarded as a function of the other; and they are called inverse

functions. Thus, if x passes from the value 2 to 3, the function 2x2

will vary from 8 to 18; and conversely, x will increase from 2 to 3,

if 2x 2 changes from 8 to 18.

In the equation of a curve, the ordinate of any point may be con-

sidered as a function of the abscissa, or the abscissa as a function

of the ordinate.

The function is considered as dependent, and the variable as

independent; for which reason, the latter is called the independent

variable, or simply the variable.

Representing a function of x, as x3
, by y, we have y=xs

; solving

with respect to x, we have x=\/y; a form expressing directly x as

a function of y.

The difference in form in the following important examples of

direct and inverse functions should be observed.

Having, y=xn
;

then x=\y.
y=a+x; x=y—a.

y
y=ax: x=~-s ' a

y=a*; x—\og&y.

5. A state of a function corresponding to a value or expression

for the variable is a result obtained by substituting the value or

expression for the variable in the function. Thus,

—00

,

—ida, —2a, o, 2a, 16a, 00,

are the states of the function 2ax? corresponding, respectively, to

the values or expressions for x,

—co , " —2, —1, o, 1, 2, 00,

and

\A
2

are the states of the function sin cp corresponding, respectively, to

the expressions or values of cp,

Tt Tt It 37T

a' ~' o' ^J T' 27T.
6 4 2 ' 2
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A function of a variable has an infinite number of states. It may
have equal states corresponding to different values of the variable;

and it may have two or more states corresponding to the same value

of the variable. Thus,

5 and i, 7±/^i2, 13 and 5, . 13 ±^24, 25 and 13,

are. the states of the function 2x-\-i-±\/Atx, Corresponding, respect-

ively, to the values of x,

1, 3, 4, 6, 9.

Trigonometric functions have equal states for all angles differing by

any entire multiple of 27t.

In connection with any state of a function corresponding to any

value of the variable, it is frequently necessary to consider another

state of the function, which results from increasing the value of

the variable corresponding to the first state by some convenient

arbitrary amount.

In order to distinguish between these two states of the function,

the first is designated as a primitive state, and the other as its new or

second state.

Any arbitrary amount by which the variable is increased from

any assumed value is called an increment of the variable. It is

generally represented by the letter h, or k, or by A written before

the variable; as, Ax, read "increment of '#".

Let x f represent any particular value of x, and h, or Ax', its

increment; then will 2ax'
2
and 2a{x f

-\-1if, or 2a(x'-\- A x') 2
, repre-

sent, respectively, the primitive and new states of the function 2ax2
,

corresponding to x' and its increment h, or Ax'. The general

expression 2a(x-\-Jif represents the second state of any primitive

state of the function 2ax2
, and from it we obtain the second state

corresponding to any particular primitive state by substituting the

proper value of x. The increment of a variable is always assumed

as positive.

6. A function of two or more variables is one which depends

upon two or more variables and varies with each. Thus,

x%n\y, xy, x$, ylogx, x2+ <yxy—$y}

are functions of x and yj and

x+y+z, v 2 +tan-' 2sin a (x s
y), Vx^+y^+logz,

are functions of x, y and z. Each variable is independent of the
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others. Particular values or expressions may be assigned to one or

more of the variables, and the result discussed as a function of the

remaining variables. A function of two or more variables possesses

all of its properties as a function of each variable. By substituting

in the function 2X*-\-y, any, assumed value for y, as 5, the result

2*2+5 i s a function of a single variable.

7. A quantity is a function of the sum of two variables when

every operation indicated upon either variable includes the sum of

the two. Thus,

'}>c^/x±y, sin (x ±y), log (x±y), ax± y,

and all algebraic expressions which may be written in the form

A{x±yY+B{x±))n~ x + +H,

in which A, B, etc., are constants, are functions of the sum of the

two variables x and +y.

Sax(x -\-y)
n

, -y'x—y—iy, 's/x+y, xxJr?, xsin(.r

—

y),

are not functions of the sum of x and y.

sin(* 2 ±j 2
), A(x 2 ±y 2

Y, 3\og(x 2 ±y 2
), %/2{x 2 ±jy 2)+7a,

are functions of the sum of the two variables x2 and day2
, but not of

the sum of x and ±y.

2(3;\/x+ay 2
), cos 2 (b<\/x+ay

2
), 2 V\og(d^/x+ay 2—y)i

are functions of the sum of the two variables b^/x and ay*

.

In any function of the sum of two variables, a single variable may
be substituted for the sum, and the original function expressed as

a function of the new variable. Thus, z may be substituted for

(x-\-y) in the function a (x-y-yY, giving the function in the form

azn
. In a similar manner we may write

tan(x—y)=tanz, ax+?=a z
, 2a^/\og{x—y)=2a<y/logz \

but it must be remembered that z in the new form is a function of

the two variables x and y.

8. A state of a function of two or more variables, corresponding

to a set of values or expressions for the variables, is the result

obtained by substituting those values or expressions for the corre-

sponding variables. Thus,

—20, —6, o, 5, 25,

are states of the function 4x-\-$y-\-2 corresponding, respectively, to
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the values or expressions for x and y,

(-4—2), (—2,0), (—8, + 10), (o,i), (2,5);

and

o, V-, 1, a/3, <»,

are states of the function tan (x-\-y) corresponding, respectively, to

the values or expressions for x and y,

f 7C 7t\ ( n n\ (lit n\ / lt\

<*«»• U'i)' fee)' (r 9-); (°-^
-

Any function, in which all of the variables are independent, is.

a

variable, and has an infinite number of states.

9. A function of several variables may be equal to some constant

value or expression; in which case one of the variables is dependent

upon the others. Thus, the first member of the equation 2x-\-$y= 7

is a function of the two variables, x and jpy but x and y are mutually

dependent.

Any equation containing n variables expresses a dependence of

each variable upon the others; and there are only n— 1 independent

variables in such an equation. In other words, the number of

independent variables in any equation is one less than the total number

of variables.

In any group of simultaneous equations, the number of independent

variables is equal to the total number of variables less the number of

independent equations.

10. Functions are divided into two general classes, abstract

and concrete.

Abstract functions are subdivided into algebraic and transce?idental.

11. An Algebraic function is one that can be expressed definitely

by the ordinary operations of Algebra; that is, by addition, sub-

traction, multiplication, division, formation of powers with constant

exponents, and extraction of roots with constant indices.

12. Certain algebraic functions have particular names based

upon peculiarities of form.

A rational function of a variable is one in which the variable is

not affected by a fractional exponent.
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An integral function of a variable is one in which the variable

does not enter the denominator of a fraction, or in other words, is

not affected by a negative exponent.

xm+Axm~1+Bxm-2+ Gx+H,

in which m is a positive integer, and A, B, etc., do not contain x,

is a rational and integral function of x. The coefficients A, B, etc.,

may be irrational or fractional.

A rational integral function of a variable is also called an entire

function of that variable.

' A linear function of two or more variables is one in which each

term is of the first degree with respect to the variables.

Thus, 2x-\-i,y-\-'iz is a linear function of x, y and z.

A function is homogeneous with respect to its variables when

each term is of the same degree with respect to them.

A linear function is a homogeneous function of the first degree.

13. Other divisions of functions, based upon form or properties,

are of frequent use.

Explicit and Implicit Functions. When a function is expressed

directly in terms of its variable or variables, it is an explicit func-

tion; otherwise it is an implicit function.

Thus, in the equations

}'=2x'2 +3z, y=tan 2x, v=3 x
,

y=log2ax z
, y—f{x, z),

y is an explicit function of the variables in the second members, and

in the equations

a'iy 2-\-b-x~=a 2
b'', yt=\ogx 2

, yz=r 2—x'" , <\/y=cotx, yn=f(x), f(y,x)=o,

y is an implicit function of x.

The relation between an implicit function and its variables is

sometimes expressed by two equations. Thus, y=su, u2= ^/x
f

in which y is an implicit function of x.

y=f(u ), it— cp{x)\ and y=f(u), x=cp(u),

are forms expressing y as an implicit function of x.

14. Increasing and Decreasing Functions. A function that

increases when a variable increases, and decreases when that variable

decreases, is an increasing function of that variable. Thus, 2x, jx3
,

2
X

,
—-> are increasing functions of x.
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A function that decreases when a variable increases, and increases

when that variable decreases, is a decreasing function of that variable.

Thus, -' (c— x)
3
,
—

-, are decreasing functions of x.
x v ' ax z &

Functions are sometimes increasing for certain values of the

variable, and decreasing for others. Thus, (c—x)
2 is an increasing

function for all values of x greater than c; but decreasing for all

values of x less than c. 2ax is an increasing function when x is

positive, and decreasing when x is negative. The positive value of

y= + Vr 2 —x2
, is an increasing function for values of x from — r to o,

but decreasing for values of x from o to -fr. The negative value of y
is a decreasing function for negative values of x, and increasing for

positive values of x.

15. Continuous and Discontinuous Functions. A function is

continuous between states corresponding to any two values of a

variable, when it has a real state for every intermediate value of the

variable; and as the difference between any two intermediate values

of the variable approaches zero, the difference between the corre-

sponding states approaches the same limit. Otherwise a function is

discontinuous between the states considered.

A continuous function in passing from any assumed state to

another must pass through all states intermediate to those assumed;

but it may 'have intermediate states greater or less than the states

assumed. Thus, the function Vr 2—x 2 is continuous between the

states o and -V3, which correspond to x= — r and x= -
; but it

is greater when x=o than either of the states considered.

An imaginary or infinite state, or the omission of any state be-

tween the extreme states considered, interrupts the continuity.

A function always continuous changes its sign only by passing

through zero; but a discontinuous function may change its sign

without passing through zero.

Entire functions of a variable are always continuous.

^^Jipx is continuous between states corresponding to x=—o and x=co .

=t-<y/tf 2—x* is continuous between states corresponding to x=—a and x=+a.

b j x=—00 and x——a.

i~V x'a—a 2
is continuous between states corresponding to i x=a an(j x—^

but is discontinuous between states corresponding to x=—a and x=a.
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16. A Transcendental function is one that cannot be expressed

definitely by the ordinary operations of Algebra.

In general, a transcendental function maybe expressed algebraic-

ally by an infinite series.

Transcendental functions are of four kinds, exponential, loga-

rithm ic, trigonometric, and inverse trigonometric.

An Exponential function is one with a variable exponent; as,

a x
,

f-4-i) ' <?
x—2 ex.

A Logarithmic function is one that contains a logarithm of a

variable; as,

log:. log (a+J'), 2ax~-
logx

A Trigonometric function is one that involves the sin, or cos,

or tan, or cosec, etc., of a variable angle; as,

x— sin.r tanx—x
cot x,

x— sin x

An Inverse Trigonometric function is one that contains an angle

regarded as a function of a variable sin, or cos, or tan, etc.

Sin-M', tan- 1
)', cosec- 1

/, read "the angle whose sin is y"j "whose

tan is y"j "whose cosec is y"j are symbols used to denote such

functions. Having given y=versing, then x=\ersm- 1y; and if

u=cosy, then y=cos-1
u, etc.

1 7. It should be observed that although the number of different

abstract functions of a single variable is infinite, they involve but

ten elementary or simple forms, five of which are the inverse of

the others.

Representing the direct functions by y, and the variable by x,

the forms are as follows:

Algebraic.

Direct. Inverse.

y=x+a. Sum. x=j—a. Difference.

y=ax. Product.
y.x=
X

Quotient.

y=xn
. Power.

Transcendental.

•r=Vj. Root.

y=a*. Exponential. x=\ogay. Logarithmic.

j'=sinx. Trigonometric. x—- sin- 1
y. Inverse Trigonometric
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18. Functional Notation. A function of any quantity, as x,

is represented thus, f(x), read " function of x". Other forms are

also used, as, f(x), F(x), F1 (x), <p(x), <p
L (x)

y
tp(x), i/,\(x).

The quantity is written within the brackets, and a letter, as /, or F,

or cp, etc., is placed before the brackets to represent the operations

involved in any particular function.

Having assumed the exterior letter, its significance remains un-

changed throughout the same subject. Thus, if -^— is represented

by f(x), f indicates that the quantity within the brackets is multi-

plied by a, and that the product is divided by i plus the quantity.

Hence,
ay az am la a sin <v

/W=7TT /«=7^r /«=I+^' /W=1+T /(sin<P)=TTii^
-

Like functions of different quantities, when considered in the

same subject, require the same exterior letter. In order to represent

different functions of the same quantity, the exterior letter is changed,

but not the letter within the brackets. Thus, if F(x) is selected to

represent 2 \'bx; then some other form, as F1 (x), or cp(x), etc.,

should be taken to denote 4<rxz-\-2x.

Different functions of different quantities are represented by

forms which have different letters within and without the brackets.

Thus, \/x 2 —a 2
,

and -^-^ may be denoted by f(x), and ip(y),

respectively.

A function of x 2 is written f(x 2
), or F(x 2

), etc., and the square

of a function of x is designated by/(^) ,
or cp(x) , etc.

$c\/my 2 may be expressed as a function of my 2 by some form,

as /(my 2
), or /' (my 2

), etc.

Having represented az 2 by f(z), and $c \/az 2 by F(az 2
), we may

write y i/az~2 =F(az 2
)= F[f(z)'].

. Similarly, having ax=<p(x), and b \/a
K—ip(ax

), we write

U ^-yj^/g* =/ ,
A

[^J \
>

.

n whkh lj) \jp{pc)
'] =b^m

idb^/a* V J

An expression containing several different functions of a variable,

as 2ax 2— log#+3 sin x, may be considered as a function of the

several functions of the variable, and represented thus,

F\_f(x), <p(x), f{x)].
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Different functions of the same variable, as x, are frequently

denoted by the symbols X, X\ X\ etc.; in which case a function of

the several functions may be indicated by f(X, X', X", etc.).

(p[F(y), ip(x), f(z)~\ represents a function of three different

functions of different variables.

Representing different functions of x by X, X', X", and various

functions of y by Y, Y', Y", a function of the several functions of

x and j would be indicated by F(X, X', X\ Y, Y', Y").

Functions of two variables are denoted thus, f(x,)')i f {
xO')>

F(y,z), cp(x,y), ip(x,z), if\(x,z), etc.; and functions of three

variables by F(x,y, z), ip (r, s, /,), etc.

Functions of any number of variables are indicated similarly by

writing all the variables within the brackets or parenthesis.

In all cases the like exterior symbols have the same significance

in any one subject.

Thus, if f (x,y)=ax-\-fy; then f(s,t)=as-{-bt; f(2, 3)=z 2a-\-7,dy

f(o,7ii)=b??i.

Having cp (x,y, z)= 2x— cz-\-y 2 ; then cp (r, s, t) = 2r— cs-\-t 2
.

Functions are frequently represented by single letters; thus

± \/R~— x'2 may be represented by y, giving y=± ty'R 2 —x 2;

and/(a-,_r) by z, giving z=/(x
ty).

Illustrations.

1. Having f(x)=xm+I>xm- 1 + Qxm-2+ + U, in which/', Q, etc., do not

contain x; then,

/(5)= 5
m+^5m_1 + <25

m_1 + - • --+ U.

/(3^)=(3^)m -f-^(3^)m
- 1+ ...-+ U.

f{a—x)={a—x)m+P{a—x)m- 1+ + U.

f(o)=om+Pom- 1 + +U.

/(^)=(^)»+JP(^8)
m"1+ -- •

•+#"

Having then,

2. cp (a)=4a*+ca; cp(x+y)=4(x+y)°~ +c(x+y),

3. 2b(ax3)=4(ax s
)

2
+c(ax*j; if>(smB)=4sm 2 B+csinQ.

4. F{x)=a*; F(x+v)=a*+r=axXay=F{x)XF(y).

z- F{xy)=a*r; F{x)' =F(y) =(«*)' =(fly) =F(xy).
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6. If <p(z)=\/zy tp(x)= $ax; and F(w)= C V 7t/—M*
;

then K0 !>(*)];= n/-
1 5aV2—2/

37^—2/

Having then,

7- /(Xfld—axT-tyj f{)', x)~ ay—bx; and f(z,z)=az—bz.

8. ^(j, z)-=a.y+^/z; ip(a,b)=aa+ yd; and ^(xjj^aHyj'

9. cp(x,y, z)=?,x—logy+tanz; <p(r,s, t)=y—log^+tan t.

10. F(x,y, z)=x3 +2y+\/z J
- F(2,—8, 64)=o; and ^(o, o, i6)=4.

11.
r -1 3a

iP [/(a), ^(6), ?>O0]; in which, /(*)=—;

tan 6 2yn

12. /(*, v, 2)=»jM+b?+M=»rwX»«bJX»«M=/(^ o, o)X/(o,j, o)X/(o, o, 2).

13. If <pCr,_y)= 2;c+sinjj// and ^{z)—3\/z; then ^|j2> (x^J^Vs x+sinjj'.

14. If /"(•*"» jj/, z)= "jax 2yz; and ^(j/)=V JJ/
S/ and (p(x)=ax

y and ip(z)= 2s;

then ^

|

L(^[/(x, 7> 2)]) 2a v

19. Lines. Any portion of any line may be considered as

generated by the continuous motion of a point.

Let s represent the length of a varying portion of any line in the

coordinate plane XV, of which the equation in x and y is given.

s depends upon the coordinates of its variable extremities, and

varies with each; but the equation of the line establishes a depend-

ence between these coordinates. Hence, s is a function of one

independent variable only.

If the line is in space, its two equations establish a dependence

between the three coordinates of its extremities, so that one only is

independent.

The same result will follow if a system of polar coordinates

is used.



GEOMETRIC FUNCTIONS. 17

20. Geometric Representative of a Function of a Single Variable.

By laying off upon the axis of abscissas assumed values of any

variable, and upon the corresponding ordinates, distances represent-

ing the corresponding states of any given function of that variable,

a line may be determined, the coordinates of whose points will have

the same relations as those existing between the corresponding

states of the function and values of the variable.

Hence, every function of a single variable may be geometrically

represented by the variable ordinate of a line, of which the variable

abscissa represents the variable.

It follows, that the relation between a function and its variable

may be expressed analytically by the equation formed by placing

the function equal to a symbol representing the varying ordinate.

Thus, placing the function 7.x
2+3 equal to y, we have y= jx'2 -\-$,

which expresses the relations between the variable coordinates y
and x, and therefore between the function 7^2

-f 3, and its variable x.

The equation thus obtained is that of a line whose ordinate, not

the line, represents geometrically the given function.

A function of a single variable, which is of the first degree with

respect to the variable, will be represented geometrically by the

ordinate of a right line.

The ordinates PM, and PM' of the curve

MQM'\ represent geometrically two different states

of the function corresponding to the same value of

the variable, § 5-

The ordinates PM, PN, and SO of

the curve MNO, represent geometric-

ally equal states of the function cor-

responding to different values of the

variable, § 5.

It is important to notice that the function represented by a line

is not, in general, the function represented by its ordinate. The
problem of determining a line which represents a given function

of a single variable ; or a function which is represented by a

given line, is not, in general, a simple one. Therefore, the method
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of representing geometrically a function of a single variable by the

ordinate of a line is generally adopted.

21. Surfaces. Any portion of any surface maybe considered

as generated by the continuous motion of a .line.

M Let u represent the area of a varying portion

of the surface generated by the continuous

. motion of the ordinate of any given line in the

plane XY.

-X u depends upon the coordinates of the

variable extremities of that portion of the given line which limits it,

and varies with each; but the equation of the given line establishes

a dependence between these coordinates. Hence, u is a function

of but one independent variable.

22. Let r=f{v) be the polar equa-

tion of any plane curve, as DM, referred

. to the pole P, and the right line PS. Let

r u represent the area of a varying portion

of the surface, generated by the radius

vector revolving about the pole, u will

change with v and r; but v and r are

mutually dependent. Hence, u is a func-

tion of but one independent variable.

23. Let any line in the plane XY, as AM,
revolve about the axis of X. It will generate a

surface of revolution.

The same surface may be generated by
~* the circumference of a circle, whose centre

moves along the axis X, with its plane perpendicular to it

;

and whose radius changes with the abscissa of the circle, so as to

always equal the corresponding ordinate of the curve AM. The
radius of the generating circumference is, therefore, a function of

the abscissa of its centre. Hence, the generating circumference,

and any varying portion of the surface generated, is a function of

but one independent variable.
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24. The area of any surface with two independent variable

dimensions is a function of two independent variables. For exam-

ple, the area of any rectangle with variable sides, parallel respectively

to the coordinate axes X and Y, is a function of the two independ-

ent variables x and y.

25. Having any

surface, as A TL
y

let

ABCD—u be a portion

included between the

coordinate planes XZ,
YZ, and the planes

DQRand ^/^parallel

to them respectively.

Let OI>=x, and OQ=y
be independent varia-

bles, u will depend
upon x,y and zj but the

equation of the surface

makes z dependent up-

on x and y. Hence, u

is a function of but two

independent variables. Similarly, it may be shown that any varying

portion of the surface included between any four planes, parallel

two and two, to the coordinate planes XZ and FZ, is a function

of but two independc7it variables.

26. Geometric Representative of a Function of Two Variables.

By laying off upon the axes of x and y, respectively, assumed values

of any two variables; and upon the corresponding ordinates, distances

representing the corresponding states of any given function of the

two variables, a surface may be determined having the same relations

between the coordinates of its points, as those existing between the

corresponding states of the function and values of the variables.

Hence, every function of two variables may be geonietrically repre-

sented by the variable ordinate of a surface, of which the variable

abscissas represent the variables.

It follows, that the relations between such a function and its

variables may be expressed analytically by the equation formed by
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placing the function equal to a letter representing the varying

ordinate. Thus, placing the function 2x 2 -\-^y-{-j equal to z, we
have z=z2x 2 -\-$y-\-']; which expresses the relations between the

variable coordinates z, x and y, and therefore between the function

2x2 -\~5y-\-7, and its variables x and y. The equation thus obtained

is that of a surface whose ordinate represents the given function

geometrically.

It is important to notice that the function represented by a sur-

face is not, in general, the function represented by the ordinate of

the surface.

The problem of determining a surface which represents a given

function of two variables; or a function which is represented by a

given surface, is not, in general, a simple one. Therefore, the method

of representing geometrically a function of two variables by the

variable ordinate of a surface is generally adopted.

27. Volumes. Any portion of any volume may be considered

as generated by the continuous motion of a surface. The form of the

surface, and the law of its motion determine the nature and class

of the volume.

Let any plane surface included between

any line in the plane X Y, as A M, and the

axis of X be revolved about X. It will gener-

ate a volume of revolution. The same volume

may be generated by the circle, whose centre

moves along the axis X, with its plane perpen-

dicular to it; and whose radius changes with the abscissa of the

circle, so as to always equal the corresponding ordinate of the curve

AM. The radius of the generating circle is, therefore, a function

of the abscissa of its centre. Hence, the generating circle, and any

varying portion of the volume generated, is a function of but one

independent variable.
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28. Having any

volume, as A TZ,
bounded by a surface

whose equation is

given, and the coordi-

nate planes, let

ABCD-OJV=V, be

a portion included be-

tween the coordinate

planes XZ, Y Z, and

the planes DQR and

BPS, parallel to them

respectively.

Let OP=x, and
OQ—y, be independent

variables. V will

depend upon x, y and z; but the equation of the surface makes

z dependent upon x and y. Hence, V is a function of but two

independent variables.

In a similar manner, it may be shown that any varying portion of

the volume included between any four planes, parallel two and two,

to the coordinate planes X Z and YZ, is a function of but two

independent variables.

29. Any volume with three independent variable dimensions is

a function of three independent variables. For example, the volume

of any parallelopipedon with variable edges parallel, respectively, to

the coordinate axes, X, Y and Z, is a function of x, y and z; all of

which are independent.



CHAPTER II.

PRINCIPLES OF LIMITS.

30. The Limit of a variable* is a fixed quantity or expression

which the variable, in accordance with a law of change, continually

approaches but never equals; and from which it may be made to

differ by a quantity less numerically than any assumed quantity

however small.

As an example, take the variable expression , and increase

x continually. Under this law, will continually approach, but

never equal, unity, x may be taken so large that the difference

between the corresponding value of and unity, will be less

numerically than any assumed number however small. Unity is

therefore the limit of the variable —^— , under the law that x in-

creases and becomes greater than any assumed number. This may
be indicated as follows,

limit T i

&£]«.xm^ao Li+x J ' i+ oo '

or, having represented by f(x), we may write /(co)= i.

y\ is the limit of the repeating decimal fraction 0.272727 ,

under the law that the number of places of figures is indefinitely

increased.

The circumference of a circle is the limit of the perimeter of an

inscribed regular polygon as the number of its sides is continually

increased. The radius is the limit of the apothem, and the circle,

of the polygon, under the same law.

* In this chapter the term variable is used in its general sense § 1, and includes

all functions of variables.
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In all cases, when referring to the limit of a variable, it is necessary

to give the law; for the limit depends not only upon the variable,

but also upon the law by which it changes. Under a law, a variable

has but one limit; but it may have different limits under different

laws.

The manner in which a variable approaches a limit depends upon

the law. It may be less than the limit, and continually increase;

or it may be greater than the limit, and continually decrease. A
variable sometimes approaches a limit by values alternately greater

and less than the limit.

Examples of the latter class may be found in the n successive

approximating fractions of a continued fraction. The continued

fraction being the limit of the successive approximating fractions

under the law that n increases.

is the limit of any number, which under a law of change,

becomes less numerically than any assumed number however small.

cc is the limit of any number, which under a law of change,

becomes greater numerically than any assumed number however

great.

and 00 are neither numbers nor measures of quantities.

Limits, as denned, include all results obtained by the substitution

of or oc for any variable quantity or quantities which enter any

expressions. Thus, A is the limit of A-\-h as h approaches 0.

Since infinity is indefinite, two infinities cannot, in general, be

compared with each other.

Expressions, such as

a cc .. .

i-f-co
J

'

are symbolic forms indicating the limits of certain variables, and the

law of change.

The statement that one number or value is infinitely great as

compared with another, is inaccurate. A number, however small,

cannot be neglected or omitted in comparison with any other, how-

ever great, without error. In applied mathematics numbers or values

are sometimes neglected in comparison with others when approxi-

mate results are sufficiently accurate for the object in view.

Any variable, which under a law approaches zero as a limit, is

called an infinitesimal.
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As any variable approaches its limit, under a law, the difference

between it and the limit approaches zero as a limit. Hence, the

difference between any variable and its limit is an infinitesimal under

the same law.

Let u be any variable, and C a constant which is its limit under

a law. Let € represent the infinitesimal C— u; then,

€=C— u . . . (i), or u=C— e . . . (2), or C=u+£. . . . (3),

in which the sign of e depends upon C and u.

That is,

i°. A constant is the limit of a variable when the difference

between the constant and the variable is an infinitesimal under the

law.

2 . A variable is always equal to its limit under a law, minus the

infinitesimal which is the variable remainder obtained by subtracting

the variable from its limit.

3 . A constant is the limit of a variable when it is the sum of the

variable and an infinitesimal under the law.

An infinitesimal is not necessarily a small quantity in any sense.

Its essence lies in its power of decreasing numerically, in other words,

in having zero as a limit; and not in any small value that it may
have. It is frequently denned as " an infinitely small quantity "j

that is not, however, its significance as here used.

In representing infinitesimals by geometric figures they should

be drawn conveniently large; and it is useless to strain the imagi-

nation in vain efforts to conceive of the appearance of the figure

when the infinitesimals decrease beyond our perceptive faculties.

Usually one or two auxiliary figures representing the magnitudes at

one or two of their states under the law, give all the assistance that

can be derived from figures.

3 1 . Theorem I. A variable with a constant sign cannot have a

limit with a contrary sign.

For suppose f(x) is always positive, and that limit /(#)=— C.

From the definition of a limit, § 30, f(x) may be made to differ from

—C by a value numerically less then C. It would therefore become

negative, which is contrary to the hypothesis. In a similar manner,

it may be shown that a variable always negative cannot have a

positive limit.
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Theorem II. If the corresponding values of any two variables

approaching their limits under a law, are always equal, the variables

have the same limit.

Let u and v represent any two variables giving always, under a

law, u= v.

Suppose C to be the limit of u; then u= C

—

e, in which € is

an infinitesimal under the law.

Substituting in above we have

C—e=v, or C=v+e.
Hence, C is the limit of v under the same law.*

Theorem III. If the difference between the corresponding values of

any two variables, approaching their limits under a law, is an infinitesi-

mal, the variables have the same limit.

Let u and v represent any two variables giving

u—v= 6
x

, or u= v-|-6
v

,

in which S is an infinitesimal.

Let C be the limit of u, then u=C

—

e, in which e is an in-

finitesimal.

Substituting in above we have

C—e=v+d, or C—v=6+e,
the second member of which is an infinitesimal. Hence, C is the

limit of v.

Theorem IV. The limit of the sum or difference of any number of

variables is the sum or difference of their limits.

Let u, v, w, etc., represent any variables, and A, B, C, etc., their

respective limits; then

u=A

—

e, v=B

—

d, w=C

—

go, etc.,

in which e, <5, go, etc., are infinitesimals.

Adding, or subtracting, the corresponding members we have

±u±v±w±&c.= ±A±B±C±&c.T£TSTgjT&c.
Hence, Theorem II,

limit [±u±V±w± &c.]= ± A ± B ± C ± &c.

= ± limit u± limit v± limit w±&c.

* Hereafter, in order to avoid the frequent repetition of the expression
'

' under

the law", it will be assumed, unless otherwise stated, that the changes in all the

variables considered together, or in the same theorem, are due to one and the same

law; and that all variables and their functions are continuous between all states

considered.
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Theorem V. The limit of the product of any two variables with

finite limits, is the product of their limits.

Let u and v represent any two variables having the finite limits

A and B respectively; then

u=A

—

€, and v= B

—

6,

in which 8 and S are infinitesimals.

Multiplying, member by member, we have

uv=AB—Be—Ad+ed.
Hence, Theorem II,

limit [uvj=A B= limit u. limit v.

Cor. The limit of any power or root of any variable with a finite

limit, is the corresponding power or root of its limit.

Thus,

limit um= (limit u)m , and limit u>»= (limit u)*».

Theorem VI. The limit of the quotient of any two variables with

finite limits, is, in general, the quotie?it of their limits.

With the same notation as above we obtain by division,

u A

—

e A Ad—Be
+

v ~ B—8 ~ B ' B (B—d)

Hence, if limit v= B is not zero, we have

limit u
limit

LvJ B limit v

If both u and v are infinitesimals, the theorem fails; as it should

since limit - can have but one value, 8 30; whereas ,!

m
!

u= ->
LvJ ' * ° '

limit v

may have an infinite number of values.

Hence, we cannot write limit - ==r?^— = -•

LvJ limit v

This failing case of the theorem is particularly important, as it

explains a subsequent result upon which the main application of

the principles of limits to the Calculus is based. Some examples are

given to illustrate it.

limit limit

limit

r (Vi+*—1) (Vi+h-i) ~i

t [" i+e—1 ] limit T 1
I _ T

efe
t

o[y/i+^— 1]
whereas umit r 1 — a-
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2°. Through the point A, with-

out the angle MNN' , draw right

lines APS intersecting the sides

AfN and N' AT nearer and nearer

to N. The segments P JV and

SAT are infinitesimals under the

,
, , limit PA

law, and we have
limit SN

The ratio

sin ASP

PA— is always equal to the corresponding value of

sin XPS
Hence, limit — 1

determinate.

,. .«. Tsn ASPI
limit -———

-

Lsm APS J

sin BAA
sin; CNQ which

Y M'

u^^G^^ Q'

V'

P'y
y

p AX X

The following example not only illustrates the case under consideration, but it

also establishes a principle of great importance.

3 . Represent any func-

tion of any single variable,

as x, by j<, giving y=f(x).
Let BMW be the

curve whose ordinate repre-

sents the given function,

§ 20. Take any state of the

function, as PM corre-

sponding to x=OP, and

increase x by PP' represented by Ax. Draw the ordinate P' M'
and the secant MM'. Through M draw MQ' parallel to X. Q'M',
denoted by Ay, will represent the increment of the function corre-

sponding to Ax.

%—=r: =— = tan Q'MMJ
will be the ratio of the increment of

PP' Ax ^

the function to the corresponding increment of the variable.

At M draw MT tangent to the curve. Then, under the law that

Ax approaches zero, the secant MM' will approach coincidence

with the tangent M T, and the angle Q'MM' will approach the

angle Q'MT, or its equal XH T, as a limit.

Hence,

limit

oLaxJ
limit

Axm-^0
[tan Q'MM '] = tan XHT.
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That is, the limit of the ratio of any increment of any fmiction of

a single variable to the corresponding increment of the variable, under

the law that the increment of the variable approaches zero, is equal to

the tangent of the angle made with the axis of abscissas by a tangent, to

the line whose ordinate represents the function, at the point corresponding

to the state considered.

When M f coincides with M the secant may have any one of an

infinite number of positions other than that of the tangent line M T,

for the only condition then imposed is that it shall pass through M.

Therefore, while llHllt — is definite, and equal to the tangent of
Z\ JCW}—^U L Z\ OC_J

the angle that the tangent line at M makes with X, 7?—?—- = -
to & ' limit A.r

indicates that the tangent of the angle which the secant makes with

X becomes indeterminate when M' coincides with M.

Limit \^- is, therefore, one of the many values that ^!—

-

LaxJ ' J limit Ax
may have under the law.

It should be observed that if limit
-J =1, then limit u= limit v;

but having limit u= limit v, it does not follow that limit — I = 1,

unless the limit of each is finite and not zero..

Theorem VII. The limit of the logarithm of any vai-iable with a

finite limit, is the logarithm of the limit of the variable.

Let (i-\-y) represent any variable with a finite limit.

From Algebra we have

log (i+;>) = M[y-~ + ~- &c].

Hence, Theorem II,

(limit;') 3 (limit j)
3

limit log (i+y) =M [limity— H — &c] = log (1 + limit;').

Theorem VIII. Limit a*—a Umit x
.

From Algebra we have

ax= 1 -f-Cj ^+c 2 •*
2+c 3 *3+&c.,

in which Cj, c2 , &c, are constants, respectively, equal to loge <7,

aog^i &c
2 '

Hence, Theorem II,

limit ax= 1 -f-Cj limit x+c 2 (limit x) 2+S:c. —a fimit x
.
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Theorem IX. Limit sin ip = sin limit ip.

From Trigonometry we have

ib s i/>
5

sin ib=ib— — h T „ „ , . — &c.
1.2.3 1-2. 3-4-5

Hence, Theorem II,

(limit tbY (limit 1b)
5

limit sin it-' = limit ib— + — &c. sin = sin limit ib.

1.2.3 1-2.3-4-5

From the preceeding theorems we learn, that, in general, the limit

of any continuous function of one or more variables is the same function

of their respective limits under the law.

That is,

limit / (u, v, ....)== /" (limit u, limit v, ....).

Hence, we have, in general, the following rule for obtaining the

limit of any continuous function of any number of variables.

Substitute for each variable its liinit under the law.

It follows, that those relations which continually exist between

variables as they approach their respective limits under a law, will exist

between their limits.

Theorem X. If unity is the limit of the ratio of any two variables

with finite limits, the limit of any function of one will be equal to the

limit of the same function of the other.

Let u and v represent any two variables, giving limit \-\ =i.

Then,

Bmit[/(u)]=limit|/| — I |=/( limit I
- I limit v ) = /(limit v)= limit[/(v)].«t[/ (u)]=limit\j\~~\ =/( limit [jjlimit v

j

Exercises.

Having limit -
[
= i, we find,

Lim. (A±u)=A±lim. u= A±lim. v.

r(A±u)v~l (A±lim.u)lim.v
For, lim.(A±u)=lim.

[_
—

J= ^^
=A±lim. - lim.v=A±lim.v.

Lim. [a u]=Alim. u= Alim. v.

_ _ tauv"] run
For, lim.[AU]=lim.| j=Alim. 1 -I lim. V=

Lim. - =- lim. u=- lim. v.
LaJ a a

a lim. v.
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For, lim.g]=lim.[^]^lim. [£] lim. v^lim! v.

4. Lim. un =(lim u) n =(lim. v) n .

ruv~] n rui n

For, lim. u"= lim. —— = lim. - lim. Vn=(lim. v)n .

5. Lim. -\/u = V lim. u =Vlim - v *

n /— n /^v n /^ n /— n /
For, lim. V u— ^m - V ~^~ =lim. V y lim. -y u=y lim. v.

6. Lim. Au= Alim - u=Alim- v
.

V / /U\ \ lim. V

For, lim. Au= lim. [" ?1 =( A
im

' ^V '
)

=Alim
-
v

.

7. Lim. log u = log lim. u = log lim. v.

For, lim. log u = lim. (log. u— log. V + log v) = lim. log - -Hog v

— log lim. - +log. lim. v=log lim. v.

8. Lim. sin u= sin lim. u=sin lim. v.

uv r /u\ 1
—-=8111 lim. (

-
I lim. v = sin lim. V.For, lim. sin u = lim. sin

.Theorem X enables us to substitute either of two variables for

the other in any function, without affecting the limit of that function,

under the law that makes unity the limit of the ratio of the two

variables interchanged.

The advantage in so doing arises when we can determine an exact

expression for one of the variables and not for the other.

To illustrate, let MM'=s be an arc

of a plane curve, PM and P'M' the ordi-

nates of its extremities. Draw the chord

MM', and denote PP' by ax. Under

the law that A 3: approaches zero, which

requires <$ to approach zero, let it be re-

• a * \c a r >. rare MM'!
quired to find limit •

Having no exact expression for the

length of the arc MM', it is impossible
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to find the limit of the above ratio; but it will be shown hereafter that

limitJ u

C

A

f
i^r^ = 1 - Hence, Theorem X,—OLchord J/J/'J

cos Q'MAI'
A~~ J

_ limit r J ~| J

~~ Sxn->0 L cos Q'MM'J cos Q'MT

It is important to notice that the above substitution is authorized

only in taking the limit of a function of the arc, for an arc is never

equal to its chord.

From Theorem III, we have limit u= limit v, or -

—

:

—
- = 1,

' '

limit v
when u— v= d is an infinitesimal; and from Theorem VI, we have

imit 1 _ ijm i t 5 when u and v have any finite limit except zero.

Hence, unity is the limit of the ratio of any two variables with finite

limits, not zero, if their difference is an infinitesimal.

When each of two variables has zero or infinity as a limit it does

not follow that the limit of their ratio is unity.

Let u, v, w, and s, be functions of the same variable, giving

under a law, limit I -
|
= i, and limit — =1.

Then will limit F^]=limit PH. For, Theorem X, limit Prl =

Umit[X]= limit
|J].

Applications of the Principles of Limits.

Limit .

32 - mn^O I

Developing I 1 -f- m J

m
by the binomial formula, we have

(\ m ,1 1 / 1 \m 2

/ m m\m / 1.2 '

+-L(i-il (i-2) . . . .(±_,!+1)-J!?— + &c„m \m ) \m J \m J 1.2. ... n
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which may be written

(i+m\ m
I+ I+ I—^+

(I—^)(l—2W)+

+ &C. (I)

1.2 1.2.3

(1

—

in) (1

—

2m) .... 1

—

(11
—i)m

1.2.3 n

As m approaches zero, each term in (1) approaches the corre-

sponding term of the series

1

Hence

lim

I+I+I^+7^ +
1.2.3.

%(^'")
i

1+ 1+— +
1.2.3

+ &C.

+ &c.

(2)

I.2.3.

From Algebra we have

£=i + i+: + +&C.-2.7182818+
1.2 1.2.3 1.2.3. •

•

m which e is the base of the Napierian system of logarithms.

Hence,

33.
Limit

limit / \ m

In the expression -j—
, substitute i-\-y for ax

,
giving

.log(i+y)__
log

ax—

I

y

Then, since x and y vanish together,

p+^V-

limit

ofe] =;ro [
iog (i+^ f]

=

iog [£&+>)' ]

=

log e=j?/.

Hence, limit I

"••-'

34. Unity is the limit of the ratio of an angle to its sin, of an

angle to its tan, and of the tan to the sin, as the angle approaches zero.

Let OCM—cp be any angle less than

-; then tan (p><p>sin cp, and

tan cp cp
-. > . > 1.
sin cp sin <p



APPLICATIONS. S3

Limit

r

tano~|_ limit f i "[

<p:~->0 Lsin (pj qm-±Q Lcos <pJ

Hence, *aA
iJ-7

^-~]=1 .

<£»^-»U|_sin (pj

Also I>^->5!V?_ and
limit rS*]=I .

tan (^ tan <£»' <p*-»0|_tan <pj

Hence, liraitT-?-~]=I .

<£>pe—»Ol_tan <£>J

T limit rsin- 1 ^ "1

Let *=sin<p, ,\ ^sin- 1
*, and ^^_^

[_ ^ J
= L

Let z/=tan<p, .'. <p=ta.n- 1
tt, and MB_^ |_

—"—J=i.

Similarly, it may be shown that unity is the limit of the ratio of

each pair of the lines PM, OT, and M\ as M approaches zero.

35. Let s be an arc of any

curve of double curvature, AC a

tangent to it at A, AB the chord

corresponding to s ; and s' the

projection of the curve upon the

plane of the tangent AC and chord

AB. AC will also be tangent to s
f

at A. [Des. Geo.].

Assume any number of points upon s, including A and B, and

connect adjacent ones by right lines. Represent the chords of s
}

thus formed, by c, c', etc.

Let 6, 6
f

etc., denote the c^sts^^^^fee angles made by the

chords respectively with the plane CAB.
The projections of the chords c, c' , etc., upon the plane CAB

will be chords of $'. [Des. Geo.].

Let the points be taken nearer and nearer to each other, and let

// denote the number of chords; then

.
limit /,_l^#_i_a«.V— limit V*. «« a ,/— limit vi=^T^-Kl+fc.)=™^; ^d ,'= ™ 2<cos5.

Under the law 5»»-*0, the cos of each of the angles 6 #', etc.,

will approach unity. Hence, §31, Theorem X,
[nnm ^ -1

limit v "

*.2 is used to denote the sum of any number of terms similar in form to the

one written after it.
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36. Unity is the limit of the ratio of an arc of any cw've to its

chord, as the arc approaches zero.

Let RT=s be an arc of any

plane curve, assumed so small

that it is concave throughout to-

wards its chord w.

Draw the tangents RW=t,
and TW—r, completing the tri-

angle R WT; and from W draw WP perpendicular to w.

As s approaches zero, we have

t-\-r>s>w, and w=t cos R-\-r cos T;

and since the angles R and T also approach zero,

limit p-Kn limit r *+ r 1

Hence, limit-I"—l = i.

In case the given curve is one of double curvature, the tangent

RW will not, in general, intersect the tangent at "T. Project the

curve, and the tangent at T, upon the plane of RT and RW. Let

s and TWbt their respective projections.

From 8 35,
limit J—c

]=i

Hence, § 31, Theorem X,

limit r^rc
-

arc m-^> L w
i = limitm

37. Let MM'=s be

any arc of a plane curve?

PM and P'M' the ordi-

nates of its extremities.

Through M draw the

chord MM'~c, the tangent

MT=b, and MQ'=PP'=
/\x, parallel to X.

From the triangle MM'T, we have - = s
|

n
ZZ'J, .

As Ai approaches zero, the arc s and the angle M 'MT will

also approach zero, but the angle T will remain constant. Hence,

the angle MM'T will approach [180°— T], and we have

limit ril— limit pinJlffl/' 7*1 sin (180 — 7»)

0|_ sin r J sin T

y
ft/ M'

N/^ A2/

if'

p'/
1/

P Ax X

t fi]= 1 =1;
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limit

35

we have
$m-+£]•

From the same figure we have

Hence, § 31, Theorem X, and § 36,

Ax
"cos Q'M T

r Ax -1

limit [.=£_"]= limit cos^M/r = I

,xsb>-»0l. AxJ Axb->0 cos Q'MT
i_ A^" —J

> or

38. Let BMM' be any plane curve, and

PMM'P' the plane surface included between y

any arc of the curve, as MM', the ordinates of

its extremities, and the axis of X.

Through M and M\ respectively, draw MQ' b

and M' Q parallel to X, and complete the rect-

angle MQM'Q'.
Let PP'—Iax approach zero. Then, since

PQM [P

'

>PMM 'P' > PMQ'P', and

we have limit \
PMM 'P '

~\ 've toe ax^oL pmq'p>]= 1 -

Hence, § 31, Theorem X,

limit rPMM'P'i limit rPMQ'P'i limit
[
***!

limit r PQM'P' -}

Axvh+QL PMQ'P' J~

If the coordinate axes make an angle

limit

with each other, then

sin h Ax'
it

rPMM'Pn i^it psinS Axl
.

39. Unity is the limit of the ratio of the surface of revolution

generated by any plane arc, revolving about an axis in its own plane,

to that generated by its chord, as the arc approaches zero.

Let PT=s be any plane arc

in the plane XY, and PP=y,
and QT=y', the ordinates of its

extremities.

Draw the chord RT—w
y

and the tangents PlV=t, and

TJF=r, forming the triangle

RWT. Draw WP"—y n
perpendicular to X.
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Let the figure be revolved about X; then

sur. gen. by t — 27ti ~7~) t = tc (y+y
rr

) t.

/

y

'+y \
sur. gen. by r— in\ —-— I r = it (y"-\-y') r.

(y+y'\
sur. gen. by zv = 27f( Jw = % (y+y')tc;.

Under the law that s approaches zero, we have limity'dimity"=y.

Hence,
limit i / , ,

\ limit . / , «\ . , limit _ , „ . /N limit r / . . ;-i

; ;>^-»osur. gen. by (/+r)= s »->o?r (j+jj/ ) /+ S )»^-»otf (j/ +y) r= s ^-»oL2 Tty \t+r)\.

limit , limit _ / , /\ limit r -,

,\*-»osur. gen. by w = S )»>->oit-{y+y) w= B m-^ol2 7eyw\.

Hence,

Since

limit pur, gen, by (/+r) ~\_ limit p+ r~l „ ,

^^->0l sur. gen. by w J .r >»»-> L f« J \

'

sur. gen. by (t+r) sur. gen. by s

sur. gen. by w sur. gen. by w '

limit pur, gen, by s 1

•B-> OLsur. gen. by zvj

'

Hence, § 31, Theorem X,

T

P Ax

limit rsur.gen.byarcyFAr i

X3»-»0L Ax J

limit rsur.gen.bych.^/^/^l

rit(y+y)e l

OL Ax J

n^+^coS Q'MM'] =
27r ->

—J COS (2'i
7

Ax»»-»oL Ax

limit r*(j'+y)*

Ax

limit

AxB->0
Ax

y rMT

40. Let BMM' be any plane curve, and

PMM'P' the plane figure bounded by any arc,

M' as MM' , the ordinates of its extremities, and the

^ axis of X. Through M and M', respectively,

Q' draw if(2' and if' <2 parallel to X, and complete

the rectangle MQM'Q*.
£—^ Let the entire figure be revolved about X, then

vol. gen. by PQM'P'>\o\. gen. by PMM'P'y vol. gen. by PMQ'P';
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and since

]imit rvol.gen.by/'QJ/'/"

_i.v m-*0

rvoi.

Lvol. gen. byFMQ 'P
i , therefore

limit

Ajcs&h

["vol. gen, by PMM'P'l

L vol. gen. by FMQ 'P ' J
~

Hence, § 31, Theorem X,

limit rvol.gen.by^J/J/'^-|_ Umit rvol. gen. by/M/g'^
-

1/2

# Ax

limit

41. Let r=f(z>) be the polar

equation of any plane curve, as

AAfM', referred to the right line

PZ>, and pole P.

Let AM=s be any portion

of the curve, and PM—r the

radius vector corresponding to M.
Regarding s as a function of

r\ ij 19, let v be increased by

P£- ]=.,

J//W AZ>. The arc J/J/'

will be the corresponding incre-

ment of s. Draw MQ' perpen-

dicular to PM', and denote PM f by r'

and § 36, we have

Then, § 31, Theorem X,

limit arc MM' I limit ch. MM' limit / MQ'^+Q'M'

limit \/^°^ )
3 +(/''—rcosAt/) :

limit

A^^->

Also,

limit A / />'—r\ 2

limit r, nfjtffjLii limit r ^ /yT/ ~1— limit f rsinAz; 1
AfB->

_ limit

0|_r'—rj
- la.nPMD.

If the radius vector /W coincides with the normal to the curve

at M. we have angle PMT=PMB-- J^q e'™=90<
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Since MT> arc MM'>-MQ', and

MTlimit limit

Lsin Q'TMJ

we have limit
n

A^»»->0

Hence, limit

\MT_~\_
OlMQ'J

Tare MM'~\
L MQ> i

= I -

r arc A/M' l Hmit fMQ'l u

L AP J A v M-> L A v J A &
limit T r sin A ^ 1

42. Let MPM' be the surface

generated by the radius vector PM=r,
revolving about P, as a pole, from any

assumed position, as PM, to any other, as

PM f
. Let Av represent the corre-

sponding angle MPM' . With ? asa

centre, and the radii PM and PM',
describe the arcs MQ' and M'R respect-

ively.

Then, since areaRPM '> area J//5M'> area J/i^'

limit rareaA'/W l , limit f area Jf/>Jf'

A z/ s»-> L area MPQ'

Therefore,

and

:]= we have
limit I

area^/^/' -|

Az/^^-OLarea J/7>()' J

limit r area^PJ/"' -! _ limit rarea JiPQ' l _ limit

, v »-» L A v J A z/ M-> L A z>
! A v B-»

,-2 AW

43. Let DABCF be a plane

figure, and DA'B'CF its projection

on another plane intersecting the first

in the right line DF.
Assume any number of points on

DF, through which draw right lines

parallel to DA and DA' respectively.

Through the points in which the

first set intersect the curve ABC, and

the points in which the second set inter-

sect A'B'C, draw right lines parallel to DF, forming the two sets

of parallelograms AE, BF, etc., and A'F, B'F, etc.

Through AA ', the projecting line of A, pass a plane perpen-

dicular to DF cutting the two planes in the right lines AP and

PA' respectively.
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The angle APA'', which we will denote by 6, is that made by

the planes with each other.

A'P=APcos fJ. areaAE=APXE>£. are2iA'E=A'PxEE=APcos0xEE
=area.AEcos f

).

Similarly, each parallelogram in projection is equal to the corre-

sponding one in the given figure into cos 6.

Let n denote the number of parallelograms, then as the number

of points on DF is increased we have

EA'P'C'P=n ]^t

x (A'£+B'E+Scc.)= I1^x (A£+BP+kc.)cosO

=DABCP cos b.

In a similar manner it may be shown that the area of the pro-

jection of any plane figure, is equal to that of the given figure into the

cosine of the angle made by its plane with the plane of projection.

44. Let MNM'N' be

a portion of any surface, in-

cluded between the coordi-

nate planes ZX, ZY, and the

two planes N'SE and NPD
parallel to them respectively.

Let OP—Ju and OS—k.
At M draw the tangents

MB and MB' to the curves

MN and MN' respectively,

and complete the parallelo-

gram MBQB'. It will be the

portion of the tangent plane

to the surface at M, included between the planes which limit

MNM'N'. Draw the chords MN, NM', M'N', and N'M,
forming the quadrilateral MNM'N' inscribed in the assumed curved

quadrilateral MNM'N' . Draw the diagonals MM', MQ and OP.

Conceive the concave surface of the curved triangle MNM' to

be entirely covered with inscribed plane triangles, formed by assum-

ing a sufficient number of points, including M, N, and M' on the

surface, and connecting those adjacent by right lines.

Let /, t', /", etc., represent the areas of the triangles respect-

ively; and let 6, 6', 6", etc., represent the angles made by their
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respective planes with the plane of the plane triangle MNM'.
Then, P^ne triangle MNM ' =t cos + t' cos ft'+ t" cos 0"+ &c.

;

or, denoting the sum of all the terms in second member by 2 1 cos 6,

we have plane triangle MJVM'=2 t cos ft.

Denoting the number of the inscribed triangles by «, and in-

creasing them indefinitely, we have

curved triangle M2VM'==Sf<* 2 1,

plane triangle MNM'=n^^^ 2 1 cos 6.

Suppose h and k to approach 0; or what is equivalent, let OF,
represented by /, approach 0. The plane triangle MNM' will

approach coincidence with the tangent plane at M. Each of the

angles 6, 6', etc., will approach 0, and for each we have

limit [-11
/»»-^oLcosJ

Hence, § 31, Theorem X,

/£* [plane triangle *Vif']=/^ [»S» . 2*],

and

^[curved triangle MArM^^^^Z
t}

Therefore,
[limit -ST. ,~"l

n
ft°° =1

From § 37,

limit ( MQ\ limit (^\_ A limit V angle BMQ 1
lT*h+0\MM' J~ r

» lw^0\MNj~ lf and /^OL angle ,VJf;¥'

J

-1 -

Hence,

limit f
tri. MBQ -1

limit f tri. JfgQ ~|

/^-^0L plane tri. J/7W J
-1

'
ana

/^0|_curved tri. MNM'}- 1 '

In a similar manner, it may be shown that

limit f trlMB'Q 1

/^-» OLcurved tri. ifiV 'if'

J

Hence,
limit r quadrilateral MBQB' ~\

/l /^—^ 01 I zzz T
A;B->oLcurved quad. MNM'N'A

45. The volume of MNM'N'—OF, included between the

coordinate planes, the two planes N'SE and NPD, parallel

respectively, to XZ and YZ, and the curved surface MNM'N',
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is greater than that of the parallelopipedon OPFS—M'C, and less

than that of OPFS—MB.

Let OP=/t, and OS=k, approach zero. Then, since

vol. OPFS—MB I

>—M'CJ- 1
'

op
oLv

limit

h fib—

^

*s»-X)Lvol. OPFS-

limit fvol. MNM'N'—OF~~\
we have A^o ^p^c—77^- I=i.

>0L vol. OPFS—MB J

Hence, § 31, Theorem X, denoting the ordinate MO by 2,

limit i-vol. MNM'AT,—OF~limit r-i

/; £
]

limit ["vol.—^B-^o
£»»->0L.

OPFS—MB
hk

~i limit r z kk~\
\=hfi»->0\ —

—



CHAPTER III.

RATE OF CHANGE OF A FUNCTION.

46. In the function 2x2
, a change in the variable from 2 to 3,

causes the function to change from 8 to 18. If x be again increased

the same amount, that is from 3 to 4, the function will increase from

18 to 32. Similarly, with other functions we shall find that, in general,

equal changes in the variables do not give equal changes in the

corresponding functions.

It is therefore necessary, in referring to a change in a function

corresponding to a change in the variable, to consider the states from

which and to which the function and variable change, as well as the

amount of change in each. With that understanding, coi-responding

changes in a function and its variable are mutually dependent.

Thus, having u=f(x) .... (1), hence, § 4, x—F{ii) .... (2),

increase any value of x in (1) by /z, and let k denote the corre-

sponding increment of the function u. Now if the variable u in (2)

be increased by k from the state that u in (1) had for the first value

of x; the function x in (2) will change by h from and to the same

values that the variable x in (1) had.

47. A function changes uniformly with respect to a variable,

when the ratio of any two increments of the variable is equal to that

of the corresponding increments of the function.

It follows that any equal increments of such functions will corre-

spond to equal increments of the variable.

Thus, in 2ax, let h and / represent any two increments of the

variable x. The corresponding increments of the function are

2ah and 2al.

h 2ah

1 2a/'

Hence, 2ax changes uniformly with respect to x.

f
——j, and if &=/, then 2a/i=2al.
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/

c

c

B/
Q

$

p"

A/ Q
#

^
P P'

p'" X

To illustrate, the function 2<zx

will be represented by the ordinate

of some right line, as ABC. In-

crease any value of x, as OP, by

any value, as PP'=h. Q'B will

be the corresponding increment of

the function. Then increasex=OP
by any other value, as PP"=/,
giving the increment S"C to the

function. The similar triangles

AQ'B and AS"C, give ~ = §r§-

Hence, the ordinate of

function, changes uniformly with x.

By giving to x=OP-, any equal increments, as PP', P'P" P"P'",

in succession, the corresponding increments of the function, Q'B,

Q"C, and Q" rD, are equal to each other.

In a similar manner, it may be shown that any function, which is

represented geometrically by the ordinate of a right line, changes

uniformly with its variable.

Any function which is of the first degree with respect to the

variable, is some particular case of the general form Ax-\-B, in

which A and B are constants.

Such functions are represented geometrically by the ordinates of

right lines, and will change uniformly with their variables.

the right line ABC, and therefore the

48. In the function 2xj x=i, gives 2x= 2.

x=2, gives 2jc= 4.

x—$, gives 2x— 6.

From which we see that the function increases two units while

the variable increases one; in other words, twice as fast.

Having $x; x=i, gives sx= 5-

x=2, gives 5>r=:io.

x=3, gives 5^=15.

Which shows that the function changes five times faster than the

variable.

Hence, different functions, in general, change with their variables

with different degrees of rapidity.
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The measure of the relative degrees of rapidity of change of a

function and its variable at a?iy state, is called the rate of change of

the function, with respect to the variable, corresponding to the state.

'

A rate of change of a function with respect to a variable, corre-

sponding to a state, is an answer to the question: At the state con-

sidered, how many times faster than the variable, is the function

changing ?

49. Since any function, which changes uniformly, receives equal

increments for any equal increments of the variable; it follows that

the rates of change of such a function, corresponding to different

states, must be equal; for otherwise, the function would receive

greater or less increments for equal increments of the variable.

Hence, the rate of any function, which changemniformly with respect

to a variable, is constant.

50. From the definitions of uniform change and rate, it follows

that the rate of a function which changes uniformly with respect to

a variable, is equal to the ratio of any increment of the function to

the corresponding increment of the variable.

Thus, having any f(x), which is of the first degree with respect

to x, increase x by any convenient increment h. f(x-\-h)—f(x)

will be the corresponding increment of the function, and the rate

will be ^ j . This ratio is independent of h, hence // may

be made zero without affecting the rate.

™, . r „ 2(x-\-/l)—2X
Thus, rate of 2x—^ J. _ 2

h

Rate of 3-r+^ [3("+*)+ *]
-[3x+2]= 3

Rate of iJ-3= b'I+ /'HHs>-3]
h D '

It follows, that the product of the rate of a function, which

changes uniformly, and any increment of the variable, is the corre-

sponding increment of the function.

51. In the function ax2
, let h and / represent any two in-

crements of x. The corresponding increments of the function are

2axh-\-ah2
, and 2axl~\-al 2

.

The ratio - is not, in general, equal to
ax

\

a *

; hence the
/ e>- .. .

i
s i 2axl+al* '

function ax2 does not vary uniformly with x.
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In a similar manner it may be shown that any function, which is

not of the first degree with respect to a variable, does not change

uniformly with the variable.

To illustrate, take any function of a

degree higher than the first. It will be

represented by the ordinate of some curve,

as MNT. Increase any value of x, as

OP', by P'P", and P'R; then, since

^ =
, ,

the ratio ^-, of the correspond-

ing increments of the function is not,

P'P"

in

T

Y y//
B

N

u// Q S

p' P" R X

general, equal to
P'R

52. In the function 2X2
:

2XT—2.

X=2, glVeS 2X'

gives

<6

<io

<I4

x=4, gives 2^=32.

Which shows that at different states the function 2X2 has differ-

ent rates with respect to x.

Similarly, it may be shown that any function which does not

change uniformly has, in general, different rates at different states.

In other words, the rate varies with the function and its variable.

Any particular rate is, therefore, designated as the rate correspond-

ing to a particular state.

If a function has two or more states corresponding to any value

of the variable, each state will have a rate.

If a function has equal states for different values of the variable,

it may have a different rate at each ; in which case it is necessary

to indicate the value of the variable corresponding to the state

considered.

53. Let P(x) be any function which does not change

uniformly with its variable. Denote its rate, corresponding to any

particular state, by P. Increase the corresponding value of x by
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h, and let R' represent the rate of the function at the new state

F(x-\-Ji). Let h be taken so small that the rates between, and

including R and R', shall increase or decrease in order.

F(x-\-/i)—F(x) will be the corresponding increment of the function.

The ratio —-

—

— is not the rate R, for the change

F(x-\-h)— F{x) is due to all rates from R to R'; but the ratio

— — ~
multiplied by h gives the increment F(x-\-h)—F(x);

hence, the ratio —-—— ~
is the rate of another functio?i of x,

which varying uniformly between the states considered, will change

by an amount equal to that of the given function,

To illustrate, let the given function

be the one represented by the ordinate

of the curve AB. Let FA represent

the state at which the rate is Rj and

let PP'—h be the increment of the

variable. P'B will then represent the

state at which the rate is R', and QB
will be the increment of the function

corresponding to h.

Draw the right line AB. Its ordinate will represent a function

which changes uniformly from the state PA to P'B, and by an

amount QB equal to that of the given function. Therefore,

QB=F(x+h)-F{x), and
QB = F^+k)-F(,)

. but 0^ and there .

fore —-

—

— , is the constant rate of the function represented

by the ordinate of the right line AB.
The constant rate of the function represented by the ordinate

of the right line must be greater than the least, and less than the

greatest rate of the given function for the states under considera-

tion ; otherwise the function represented by the ordinate of the

right line would change by a less or greater amount than the given

function between the states considered. Hence, we have either

F(x+k)—F(x) F(x+h)—F{x)
K< — 1

— <R'
t

or R> — 1
^ >R';
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depending upon whether the rates from R to R' are increasing or

decreasing.

One or the other of the above relations will exist always as h is

diminished numerically; and since, in either case, R is the limit of

R' under the law that h approaches zero, we have

limit rF(x+A)-F(x) l

/m-*0 L h J
—K '

That is, the rate of change of any function with respect to a

variable, corresponding to any state, is equal to the limit of the ratio of

any increment of the function, from the state considered, to the corres-

ponding increment of the variable, under the law that the increment of

the variable approaches zero.

The above principle enables us to find the rate of any function

with respect to a variable, corresponding to any state, by the follow-

ing general rule.

Give to the variable a?iy variable increment, and from the corres-

ponding state of the fmiction subtract the primitive. Divide the

remainder by the increment of the variable, and determine the limit of

this ratio, under the law that the incre?nent of the variable approaches

zero. In the result substitute the value of the variable corresponding to

the state.

It should be observed, that a rate, determined by the above

method, is equal to a limit of a ratio of two infinitesimals, which

limit is determin ate ; and that it is not equal to the ratio of their

limits, which ratio is -§-, and therefore indeterminate. See § 31,

Theorem VI.

54. To illustrate the changes

which occur in the ratio of the

increment of the function to that of

the variable under the above law; let

the given function be represented

by the ordinate of the curve AB"

B

f

,

and let PA be the state considered.

The ratio, for h=PP', is^

,

which is the rate of the function

represented by the ordinate of the

right line AB'.
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D" R"
For h=PP", the ratio ^p-^r , is the rate of the function repre-

sented by the ordinate of the right line AB"

.

As h is diminished, the ratio is always the rate of a function

represented by the ordinate of a secant approaching the tangent

A T; and the limit of the ratio is the rate of the function represented

by the ordinate of the tangent A T.

That is, the rate of the given function, at the state PA, is the

same as that of a uniformly varying function represented by the

ordinate of the tangent A T.

This is consistent with previous conceptions and definitions, for

the direction of the motion of the point, generating the curve at

any position, is along the tangent at the point ; and the rate of

change of the corresponding ordinate of the curve and tangent,

must be the same.

55. § 31, Theorem VI, 3 , shows that the limit of the ratio of

any increment of a function from any state, to the corresponding

increment of the variable, under the above law, is equal to the

tangent of the angle made, with the axis of abscissas, by a tangent

to the curve, whose ordinate represents the function, at the point

corresponding to the state considered. Hence, the rate of a

function with respect to a variable at any state, is equal to the tangent

of the angle above described.

Exercises.

Find the rate of change of each of the following functions.

limit [2a{x+k)—2ax~]

r
-

2ax
-

Ans
- /^oL h \

=2a -

limit [-(*+A)«-*M
o2. x\ Ans. ^^ ~

h
\=ix.

limit ra(x+A)*+5(x+A)-(ax* + bx)
~\

'

3. ax*+ 6x. Ans. ^^
[_

~
h J

=2ax+&.

a limit

4- ~- Ans. ^^0

5. 2ax2
. Ans. $ax.

6. x s
. Ans. 3x'2 .

7. 4^r4 . Ans. 16* 3
.

a a
x-\-h x
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l+x AnS '

(l+^) s '

2x 6
Q. ——

.

Ans.

10. How is the ordinate of a parabola, corresponding to x=$,
changing with respect to the abscissa ?

j . ; t limit f V22J(x+h)— V2^x ~\

y=V2Px, . . rate of y=
;̂ [_ % J

(VD^Vf An,

ii. Same corresponding to focus

?

Ans. i.

12. Find the abscissa of the point, of the parabola y
2=4x, where

the ordinate is changing twice as fast as the abscissa.

Rate of y—i .'. 2= \/ 2x
= \/

^

2^

2x 4

13. At the vertex of a parabola, how is the ordinate changing as

compared with the abscissa ?

14. Find the rate of change of the abscissa of a parabola with

respect to the ordinate.

y _ A /2x
mAns. - -V - •

15. Find the coordinates of the point of the parabola y
2=Sx, where

the abscissa is changing twice as fast as the ordinate.

p y Ans. y=S.
~ y ~ 4 x=S.

16. Find the rate of change of the ordinate of the right line

2y— 3#=i2, with respect to the abscissa.

Ans.
2

17. A point moves from the origin so that y always increases

I times as fast as xj find the equation of the line generated.

- = tan of angle line makes with X. .'. Ans. 4.y=$x.
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56. Motion.* When a point changes its position with respect

to any origin it is said to be in motion with respect to that origin.

In general, the distance trom any origin to a point in motion

continually changes, and is a continuous function of the time during

which the point moves.

When the distance changes so that any two increments of it

whatever are proportional to the corresponding intervals of time,

the distance changes uniformly with the time. The point is then

said to be moving uniformly, or with uniform motion with respect

to the origin.

If the distance does not change uniformly with the time the

point is said to be moving with varied motion with respect to the

origin.

A train of cars moves from a station with varied motion until it

attains its greatest speed, after which its motion along the track is

uniform while it maintains that speed.

With uniform motion equal distances are passed over in any equal

portions of time, and with varied motion unequal distances are passed

over in equal portions of time.

Let s represent the

A s M. N O variable distance from any

origin as A, to a point

moving on any line, as

MNO; and let t denote

the number of units of

time during which the point

moves; then s=f(t).

If /(/) is of the first

degree with respect to t,

the distance s will change uniformly; otherwise the point approaches,

or recedes from the origin with varied motion, § 47, § 51.

The rate of change of s, regarded as a function of t, corres-

ponding to any position of the moving point, is called the rate of

motion of the moving point with respect to the origin; and since

*Motion, without regard to cause, is generally discussed under the head of

Kinematics, but many important applications of the Calculus involve motion, there-

fore, some of the definitions and principles of Kinematics are here and elsewhere

introduced.



RATE OF CHANGE OF A FUNCTION. 5

1

uniform motion causes s to change uniformly with f, the rate of

motion, in such cases, is constant. § 49.

In varied motion, the rate varies with /, and is therefore a

function of /.

Let C be a fixed point, CA a

fixed right line, and B a point in

motion so that the angle ACB,
denoted by 6, is changing. Then

the line CB is said to have an

angular motion with respect to, or

about, C.

Let s represent the length of the varying arc, of any convenient

circle, subtending 6, giving 6= — .

Both 6 and s are functions of the time during which CB moves.

Angular motion is nnifoi-m when any two increments of the

angle, or arc subtending the angle, are proportional to the corres-

ponding intervals of time; otherwise it is varied.

57. A function of two variables changes uniformly with respect

to both variables when it receives equal increments corresponding

to any equal increments of each variable.

Every function of two variables, which is of the first degree

with respect to the variables, must be some particular case of the

general form Ax-\-By-\-C, in which A, B and C are constants.

Placing z=Ax-{-By-\-C, and increasing x by h, and y by k
y

we have for a second state z'=A(x-\-h)-\-B(y-\-k)-\-C.

Again increasing x by //, and y by k, we have for a third state

z"=A(x+2/i)+B(y+2k)+ C.

z
f—z=A/i-\-B&, is the increment of the function from the

primitive to the second state.

z"—z'= A/i-\-Bk, is the increment from the second to the third

state.

These increments of the function are equal, and correspond to

any equal increments of each variable. Hence, any function of two

variables, which is of the first, degree with respect to the variables,

changes uniformly with respect to both variables.
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58. Let 2=/(x, y)=Ax2-\-By-\-C. Increase the variables,

respectively, by h and k, giving the new states,

z'=A (x+/i) 2+B(y+£)+ C, and z"=A{x+2h)*+B (y+2k)+ C.

Hence,

z'—z=z 2Axh-\-Ah2-\-Bk, and z"—z'=2Ax/1+3Ah2+Bk.

The increments of the function, corresponding to equal incre-

ments of each variable, are unequal, hence the function does not

change uniformly with respect to both variables.

In a similar manner, it may be shown that any function of two

variables, which is not of the first degree with respect to the variables,

does not change uniformly with respect to both variables.

59. Any function of two variables which changes uniformly

with respect to both variables must be of the first degree with respect

to the variables, and its form must be some particular case of the

general expression, Ax-\-By-\-C.

It also follows, that the surface, whose ordinate represents a

function of two variables which changes uniformly with both vari-

ables, is a plane.

60. In a similar manner, it may be shown that any function of

any number of variables, which changes uniformly with respect to

all the variables, must be of the first degree with respect to the

variables.

6 1 . The Calculus is that branch of mathematics by which measure-

ments, relations, and properties of functions are determined from

their rates of change.

It is generally divided into two parts.

Part I, called Differential Calculus, embraces the deductions and

uses of the rates of functions.

Part II, called Integral Calculus, treats primarily of methods for

determining functions from their rates.



CHAPTER IV.

THE DIFFERENTIAL AND DIFFERENTIAL COEFFICIENT
OF A FUNCTION.

62. An arbitrary amount of change assumed for the independ-

ent variable is called the differential of the variable.

It is represented by writing the letter d before the symbol for

the variable ; thus dx, read " differential of x" denotes the differ-

ential of x.

It is always assumed as positive, and remains constant through-

out the same discussion unless otherwise stated.

63. The differential of a function of a single variable is the

change that the function would undergo from any state, were it to

retain its rate at that state, while the variable changed by its differential.

The differential of a function which varies uniformly with its

variable, is the change in the function corresponding to that

assumed for the variable.

To illustrate, let PA be any state of the

uniformly varying function represented by

the ordinate of the right line AB. Assume

PR=dx.
QB, the corresponding change in the

function, is the differential of the function.

The differential of a function which does not vary uniformly

with its variable, is not, in general, the corresponding change in the

function; but it is the corresponding change of a function having a

constant rate equal to that of the given functiop at the state con-

sidered: or, in other words, it is the change that the function would

undergo, were it to continue to change from any state, as it is

changing at that state, uniformly with a change in the variable equal

to its differential.
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Y
M

A
Q

R XP dx

To illustrate, let PA be any state of

a given function represented by the ordi-

nate of the curve AM. Assume PP=dx.
QM is the corresponding change in

the function; but QB, the correspond-

ing change in the function represented

by the ordinate of the right line AB
drawn tangent to AM at A, is the differ-

ential of the given function corresponding

to the state PA. For the function represented by the ordinate of

AB has a constant rate equal to that of the given function at PA,

§ 54; and QB is the change that the given function would undergo;

were it to continue to change from the state PA, as it is changing

at that state, uniformly with a change in x equal to dx.

The differential of a function

which does not vary uniformly with

its variable, may be less than the

corresponding change in the function.

Thus, QB, < QM, is the differential

of the function represented by the

ordinate of the curve AM, corre-

sponding to PA.

A train of cars in motion affords a familiar example of a differ-

ential of a function.

B

Suppose that a train of cars starts from the station A, and

moves in the direction A E with a continuously increasing speed.

Let x denote the variable distance of the train from A at any

instant; it will be a function of the time, represented by t, during

which the train has moved, giving x=/(t).

Suppose the train to have arrived at B, for which point x=AB.
Let BD represent the distance that the train will actually run in

the next unit of time, say one second, with its rate constantly

increasing.

Let B C represent the distance that the train would run, if it

Were to move from B with its rate at that point unchanged, in a
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second. Then will the distance BC represent the differential of x
regarded as a function of t, corresponding to the state x=A£; and

one second will be the differential of the variable.

The differential of a function is denoted by writing the letter d
before the function or its symbol.

Thus, d2ax3
, read " differential of 2 ax3," indicates the differ-

ential of the function 2ax?.

Having J— log^/^, we write dy=d\og^/7ix*.

~- dx denotes the differential of y regarded as a function of xj

and —j-dy is a symbol for the differential of the inverse function;

that is, of x regarded as a function of y.

64. From the definition of a differential of a function, and

from § 50, it follows, that a differential of a function is the product

of two factors ; one of which is the rate of change of the function

at the state considered, and the other is the assumed differential of

the variable. Hence, the differential of any given function may be

determined by finding its rate, by the general rule, § 53, and multi-

plying it by the differential of the variable. Thus, having the

function 2x2
, we find, § 53,

p(.r+/fr) 8—

^

2 -

4xdx is, therefore, a general expression for the differential of

2x2
, and is written d2x2=4xdx.

Its value corresponding to any particular state is obtained by

substituting the value of the variable corresponding to the state;

thus, for x=2, we have d2x2=8dx.

65. Since the rate of change of a function is the coefficient of

the differential of the variable, in the expression for the differential

of the function; writers on the Calculus have, in general, adopted

for it the name "differential coefficient."

The differential of a function is therefore equal to the product

of the differential coefficient by the differential of the variable.

It follows, that the differential coefficient is the quotient of the

differential of the function bv the differential of the variable. Thus,

-^——1 — =4^= rate corresponding to any state.
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having d2x2=4xdx, the differential coefficient is —

—

=z^x j or,

having denoted any function of x, by y, and its differential by dy,

its differential coefficient is represented by ~-

.

The differential coefficient of any function of a single variable

may be determined by the general rule, § 53.

Thus, having y=f(x), in which y represents any function, of

any variable x, let y' denote the new state of the function corres-

ponding to the increment h of the variable. Then,

limit ["/(*+ ^)—/(*) 1 _l limit \yjZl\ -u.
dy_

.

7/m->0 L h J /im->0 L h J dx J

or, representing the increment of x by Ax, and that of y by Aj',

we have

limit [AJT a>_

Since the increment of the variable, represented by h or Ax,

varies, it may happen that /z= Ax= dx. It is exceedingly important

to observe, however, that the corresponding value of y'—y or a^,

is not, in general, equal to dy j for that would give'

fy'—y\ =(^l\ i = d-l
\ /z Jh=dx \AxJ t^x-dx dx J

which, in general, is impossible, since -~ is not a value of the ratio

, . but is its limit under the law that h vanishes.
h

If, however, the function changes uniformly with respect to the

variable, y ~y
will be constant for all values of h, § 50; and y

f—y
will be equal to dy when h is equal to dx.

66. The following important facts in regard to a differential

coefficient should now suggest themselves to the student.

It is zero for a constant quantity. In other words, a constant

has no differential coefficient.

It is constant for any function which varies uniformly.

It varies from state to state for any function which does not

vary uniformly.

In general, therefore, it is a function of the variable.
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It may have values from —x to -}-x .

Having represented a function by the ordinate of a curve, the

differential coefficient is equal to the tangent of the angle made

.with the axis of abscissas, by a tangent to the curve at the point

corresponding to the state considered, £ 55.

Thus, assuming PJ?=
the differential co-

efficient of the function,

represented by the ordi-

nate of the curve AM,
at the state PA, is equal

to

dy
tenX£A=tanQA£= -jg

It should be noticed that '-f- is independent of the value

assumed for the differential of the variable; for if PR'=dx, then

Q'D=dy
i
and we have, as before, '-f- =tanXJEA.

In this illustration the function is an increasing one, and its

differential coefficient is positive, since it is equal to the tangent of

an acute angle.

In case the function represented

by the ordinate of AM, is a decreas-

ing one, its differential coefficient

corresponding to PA is negative,

since the anele XEA is then obtuse.

\A Q

NsJE

V dy
B

R
^\m

P &x x
X

67. The following facts should now be apparent concerning a

differential of a function.

It is zero for a constant.

It is constant for any function which varies uniformly.

It is a function of the variable for any function which does not

vary uniformly.

Its value depends upon that of the differential coefficient, and

that assumed for the differential of the variable.

It may have values from — x to -j-x .
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It will be numerically greater or less than the differential

coefficient depending upon whether the differential of the variable

is assumed greater or less than unity.

It has the same sign as its differential coefficient.

68. If the differential of the variable is assumed equal to. the

unit of the variable, the differential of a function and the corres-

ponding differential coefficient, will have the same numerical value.

Thus, if -j- =z2, and ^=iinch, we have, ~dx=2 inches. In

such cases the differential of the function expresses the rate in

terms of the unit of the variable; and since it is more definite, it is

frequently used instead of the differential coefficient.

To illustrate, let s denote any

g variable distance regarded as a func-

tion of time, giving s=f(t). Assum-
ing any convenient length to represent

the unit of t, we may, by substituting

s for y and / for x, § 20,- determine

a line, as AM, whose ordinate repre-

sents the given function.

If PR=dt represents one hour,

ds— dt=Q£ represents the change that

s would undergo in one hour, from the state represented by PA,
were it to retain its rate at that state; and is more definite than

ds
the corresponding abstract value of —

.

69. The differential coefficient of the variable distance from

any origin to a point in motion, regarded as a function of the time

of the motion, is called the velocity of the moving point with

respect to that origin.

Representing the variable distance by s, the symbol for the

velocity is —

.

For the reasons described, velocity is measured by the product of

— and the distance assumed to represent the unit of time.

A

// M
ds

Q

R T

S

P dt
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That is, the measure of the velocity of a point in motion at any

instant, in any required direction, is the distance in that direction, that

the point would go in the next unit of time, were it to retain its rate at

that instant.

It should be noticed that the

distance referred to above, and repre-

sented by s, may, or may not, be esti-

mated along the line or path upon

which the body moves. Thus, if a

point moves from A towards B, and

the velocity at any point, as C, in the

direction AB is required, the distance

s is estimated along the path described; but if the rate or velocity

with which a point, moving from A to B, is approaching D is

required, s must represent the variable distance from the moving
ds

point to D, in order that — - shall be the required rate of motion.

Since velocity is a rate, it is constant in uniform motion, and a

variable function of time in varied motion. § 56.

The differential coefficient of velocity regarded as a function of

time is called acceleration. It is denoted by — , in which, v repre-

sents velocity.

Acceleration is generally expressed in terms of the distance

which represents the unit of time.

The differential coefficient of any varying angle regarded as a

function of the time is called angular velocity.

Representing any varying angle by 6, and its angular velocity

by 00. we rtave &?= —

.

*
' at

If s denotes the varying arc, of a circle whose radius is r, which

subtends 0, we have

5 db _lds*0=— • hence, w= -r — -37 .

r 3 at rat

That is, angular velocity is equal to the actual velocity of a point,

describing any convenient circle about the vertex of the angle as a

centre, divided by its radius.

*Assume this result for the present.
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It is customary in applied mathematics to consider the radius

equal to the unit of distance used in any particular case. Angular

velocity will then be measured by the actual velocity of a point at

the unit's distance from the vertex.

The differential coefficient of angular velocity regarded as a

function of time is called angular acceleration.

It is denoted by —— , in which go represents angular velocity.

70. Let y—PA represent any state of any increasing function

of x; and y' the new state corresponding to an increment PPf=h

of the variable. will be positive, provided h is assumed suf-

ficiently small, and will remain so as h approaches zero, § 14.

Hence, § 31, Theorem I.
limit

[

>'—y~\ _ dy_
tan XPA, is

positive.

That is, the differential coefficient corresponding to a?iy state of an

increasing function is positive.

Let y=PxA t represent any state of a decreasing function; and

y' its new state due to an increment of the variable equal to P1
P

1

f =h.

Then ^-7-^ will be negative, if h is small enough, and will remain

so as h approaches zero.

Hence,
«J* p=2] = g = tanXE

X
A

X , is negative.

That is, the differential coefficient corresponding to any state of a

decreasing function is negative.

It follows, that a function is increasing when its differential

coefficient is positive, and decreasing when it is negative.
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If for any value of the variable

the differential coefficient is zero,

the function is neither increasing

nor decreasing, and the tangents at

the corresponding points of the line

whose ordinate represents the func-

tion, are parallel to the axis of X.

If the differential coefficient is infinity, the rate of the function is

infinite; and the tangents at the corresponding points of the line

whose ordinate represents the function, are perpendicular to the axis

of X.

71. Let cp (r) and ip (x) represent any two functions of the

same variable which are equal in all their successive states, giving

cp [x)--ip (x) .... (i). Increase x by Ax, and we have

<p (X+ Ax)=ip (x-\- Ax) .... (2).

Subtract (1) from
. (2), member from member; divide both

members of the resulting equation by Ax, and we have

<&+*'>-&) = ^+AX)-»W
for aU va[ues Qf and ^

Hence, limit r<p{x+ Ax)—(p(x) l

AxB^O L Ax J
~ limit

Ax«Ho[
j){x+ Ax)—lp{x)

Ax y
§ 31, Theorem II. Therefore,

dcp(x) diP{x)
also dcp{x) = dip (x)

dx dx

That is, if two functio7is of the same variable are equal in all their

successive states, their corresponding differentials are equal.

Cor. If any two corresponding states of two differentials offunc-

tions of the same variable, are unequal, the functions are not equal in

all their successive states.

72. Having given f(x)±C, in which C represents any con-

stant, we have, by the application of the general rule § 53,

limit

i[
[f(x+A)±C]-[f(x)±C]-\ _ Umit Vf{x+h)-f(x)

Hence,
d(f{x)±C)

dx

df{x)

dx

- kw^>0 L h J

and d(f(x)±C)=df(x).



62 PRINCIPLES OF DIFFERENTIAL COEFFICIENTS.

That is, the differential of a function plus or minus a constant is

equal to the differential of the function.

Cor. If two corresponding differentials are equal, it does not follow

that the functions from which they were derived are equal.

and F{y) (0.73. Let y=/(.x) . . . (i),

be direct and inverse functions.

In (2) increase any value of y by k, and denote the correspond-

ing increment x'—x, of x by //.

In (1) give the increment // to that value of x, which in (2)

corresponded to the value of y that was increased by k, then y in

(1) will receive an increment y'—y equal to, and corresponding to

k, the assumed increment of y in (2). § 46.

Hence,
1

x'—x

Taking their limits under the law h^^O, which requires /&*»-K),

we have
7

limit
A R^z2! = f^t—nhw>-*0 L h J limit x'—x l-

kv*, \Q L Jr. J

Hence,
dy

dx dx
dy

That is, corresponding to any value of x, the differential coeffi-

cient of y regarded as a function of x, is the reciprocal of the differ-

ential coefficient of the inverse function.

To illustrate, let the function y
be represented by the ordinate of the

curve AM. Assume dx=PR, and

from the figure we have, correspond-

ing to the state PA,

QB
PR

dy
-r =tan QAB.

The inverse function will be re-

presented by the abscissa of the curve

AM regarded as a function of the

ordinate, and assuming dy—KL, we have for the state KA, corre-

sponding to A,

HE dx

AH = dy=tanEAH' EAH=W°—QAB.
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Hence,

X*nQAB'=cotEAH= Î]l; or £= ^-
dy

It should be observed that, in general, dy in the first member of

the above equation is not the same as dy in the second; for the

first is the differential of y as a function, which, in general, is a

variable; and the second is a differential of y as the independent

variable. The same remarks apply to dx, in the two members,

taken in reverse order.

The figure illustrates the differences referred to.

74. Let y be an implicit function of x, the relation being

given by the two equations

y=/(u) .... (1). u=<p(x) .... (2).

Increase any value of x by h, and denote the corresponding

increment u'— //, of u by k.

In (1), increase by k that value of u which in (2) corresponds

to the value of -x that was increased by h, then y in (1) will

receive its corresponding increment y'—y.

Hence, since u'—u=k, and the increments of x, u, and y
correspond to the same value of x, we have

y'—y_y'—y **'

—

u

h
=

k
X

li

*

Taking their limits, under the law //^^0, which requires /£«*-H),

we have "?» P-^l =
]
imi' P^l x J™' \^-\

tt dy dy du
Hence, -f- — -~ X -j- .

dx du dx

That is, corresponding to any value of x, the differential coefficient

of y regarded as a function of x, is equal to the product of the differ-

ential coefficient of y regarded as a function of u, by the differential

coefficient of u regarded as a function of x.

Similarly, having y= f(u), ti= (p(x), x=ip(s), we find

dy dy du dx

di du dx ds
J

and the same form holds true whatever be the number of the inter-

mediate functions.



64 PRINCIPLES OF DIFFERENTIAL COEFFICIENTS.

If we have y—f{u) . . . (i), and x= ip(u) . . . (2);

(2) may be written u= cp(x) . . . (3).

Hence, from (1) and (3), y=^Xj.7 w/ dx du ax

But'§73, g=|- Hence, f = |_.

That is, corresponding to any value of x, the differential coefficient

of y regarded as a function of x, is equal to the quotient of the differ-

ejitial coefficient of y regarded as a function of 21, by the differential

coefficient of x regarded as a function of u.

Examples.

Given

or dv <•

1. y=au d
, u—ox. ........<*.— — 2ab 2x

dx

2. z=ay2
, y %= 2px. . •— =2ap.

dy_

3. y=f(u), *=,*«), »=*,) £ = -| X |-

2 2 <^J' J^J 2

4. y—u*, X=3U, X—2s a
. ..... — = •

<& 9

eta

5 . „=/(«), «=^), *=*,) | = |x'f

:

dy dj;

6. y=f{ti), v=cp(u), v=ip(s), z=F(s), z=F2
(x). ^= W X "^ X ^'

dw ds



CHAPTER V.

DIFFERENTIATION OF FUNCTIONS OF A SINGLE
VARIABLE.

75. The differential of any function of a single variable may
always be determined by applying the general rule, § 53, and

multiplying the result by the differential of the variable.

By applying the general rule, § 53, to a general representative

of any particular kind of function*, there will result a particular

form, or rule, for differentiating such functions, which is generally

used in practice.

76. Differential of the Product of a Function and a Constant.

Let Cf(x) represent the product of any function by any constant

denoted by C.

Applying the general rule, § 53, we have

limit r Cf(x+/i)-Cf(x) l limit r/(x+/z)-/(-r) -| _ df{x\

/z>^->0 L h J
-
W*s»->0 L h J

~ L
dx

Hence, ^. =^; and dCf(x)= Cdf(x).

That is, the differential of the product of a function and a constant

is equal to the product of the constant and the differential of the

function.

Cor. The differential of the quotient of a function by a constant

is equal to the quotient of the differential of the function by the constant.

77. Differential of the Sum or Difference of any Number of

Functions., Let y= u±s±t±etc, in which, u, s, t, etc. are any

functions of any variable, as x.

*Functions of a single variable only are considered in this chapter.
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Applying the general rule, § 53, we have, § 31, Theorem IV,

t ry'—yl = limit V u'—u ^ Kmit [s'—s-] limit [t—t'~\

L h J /i»^>0 L h J
X

As»->0 L A J /fe^O L A J "

! '

Hence

limit

JL—-Jt ± _i ± __ ±etc, and dy=du±ds±dt±etc.
dx dx ax ax

That is, M<? differential of the Sum or difference of any number of

functions of the same variable is equal to the sum or difference of their

differentials.

To illustrate, let the side PM—x, of

the rect. MN be variable, and the side

MO=a-\-b, constant. The rect. MN will

be equal to the sum of the two rects., MS
and OS, giving, rect. MN—ax-\-bx. In-

crease x by PR=dx; then from the defini-

tion of a differential, § 63, we have

dMN—PQy^adx+bdx.

N

M dx

d(x'a—2jt)=2(jt—l)dx.

Examples.

d(x %—3ax+cx 2)=(2x—$a+ 2cx)dx.

d
]^
a+x)—{x—b)+cx*— jj = (2CX—^ &.

78. Differential of the Product of any Number of Functions.

Let yz be the product of any two functions of any variable, as x.

Applying the general rule, § 53, we have

limit V y'z'—yz l _ limit JT
zAy+yAz+AyAz l

Ax»»-»0 L Ax J Axb->0 L A^ J

_ limit r &y ^, , A x
Az l,

31, Theorems IV and V,Hence

limit ry'z'—yz-} _ Hmit f Ayl
AjB->0 L Ax J

Z AxB->0 LaxJ AJ
limit r , „ i limit

Ax: r-i-L AxJ

Therefore,
dx z+ji; and ^=^-h>'>

That is, the differential of the product of any two functions of the

same variable is equal to the sum of the products of each function and

the differential of the other.
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To illustrate geometrically, let

ONPM be a state of a rectangle with a

variable diagonal represented by x. Two
adjacent sides, denoted by z and y re-

spectively, will be functions of x, and yz

will be the variable area of the rectangle.

Assume dx=PP, and complete the rects.

PT—ydz, and PS—zdy. Then, since

dyz=ydz-\-zdy, we have d (rect. OP)= rect. PT+ rect. PS.

A consideration of the figure and the law of change shows that

the sum of the two rects. PT and PS is the amount of change

required by the definition of a differential. § 63.

Let vsu be the product of any three functions of the same

variable. Place vs=r, giving vsu— ru.

Differentiating, we have dvsu=dru= rdu-\-udr, in which,

dr=vds-\-sdv. Hence, by substitution,

dvsu— vsdu-\-vuds-\-sudv ... (1)

Having the product of four functions of the same variable,

vsuw, we may place vsu= r, and in a manner similar to above,

deduce

dvsu7U—vsudw-{-vs7vdu-\-vuzvds-{-suwdv . . . (2)

In the same way, it may be shown that the differential of the

product of any number of functions of the same variable is equal to the

sunt of the products of the differential of each function and all the

others.

79. Dividing each member of Eq. (2) by vsuw, we have

dvsnw dtu du ds dv= h — H +—

'

vsuw w u s V

Similarly, it may be shown that the differential of the product of

any number offunctions of the same variable, divided by their product,

is equal to the su?n of the quotie?its of the differential of each function

by the function itself.

80. Differential of a Fraction. Let — be any fraction, in

which u and s are functions of the same variable.
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Place — = y, then u=sy; and, § 78, du=yds-\-sdy,

Hence, sdy=du—yds, or sdy=.du ds= sa

s s

r^, r j jti sdu—uds
Therefore, dy=d - = —

.

s s*

Hence, the differential of a fraction is equal to the denominator

into the differential of the numerator, minus the numerator i?tto the

differential of the denominator, divided by the square of the denomi-

nator.

If the numerator is a constant denoted by C, we ha've

C__ Cds
t

s ~ s 2

If the denominator is a constant denoted by C, we have

u du
d
~c
=

a'

81. Differential of y
m

. Let y represent any function of any

variable, and m any constant.

i°. If m is entire and positive, y
m=yyy . . , j and § 78,

dym—ym-1dy-\-ym-1dy -J- etc.

=

?ny™-x
dy.

2 . If m is a positive fraction, equal to - j p and q being entire

and positive, we have

y
m=y\ and (y

m
) =y . Hence, i°.

d(fD
)=.q(f°) *d(f°)=py *dy.

Whence,

d {
y^)=PJ^ = tJl^dy=lJ^dy= P-J~\y=m ;"

1

dy.

3 . If m is negative, represent it by —n, n being entire or

1
fractional; then y

m= — , and §80
r-

dyn nyn
~ 1 dy

d()'m)=-y^ =— y,n =-ny-»-*dy=my™-idy. . . . (1).
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Hence, the differential of any power of any function with a con-

stant exponent is equal to the product of the exponent of the power, the

function with its exponent diminished by unity, and the differential of

the function.

82. Substituting - for m in Eq. (i), we have

I 1 1-j 1 — dy dy

<r = n r Jy= - r. " <*= ~s = ;^F-
ny n v y

Hence, the differential of the 71
th root of any function is equal to

the differential of the function divided by n times the 71
th root of the

n—i power of the function.

If;/= 2
; rfA/37=^_

2V y

3VJ'
2

Examples.

1. d (2x) 2= 2 (2x) d(2x)=Sxdx.

2. d(2X2)=2 (2X2
) d(2X2

)= l6x3dx.

3

.

d 4X*= 4 X 4x3dx= 16x3dx.

4. d xn=nxa~1dx.

5

.

d (axf=3 (axfd (ax)= 3a
3x2dx.

6. d
(3*)-2=(—2) (3x)-*d (3x)=-6 (3x)~

3dx.

7

.

d x~n=—n x-*-xdx.

8. dx*=- x~^dx = dx

2 2 yyfx

1 I ±_, dx
9. dx* — -*' dx-= .r—f-n n \/x° l

IO. dx~*=—±x~*dx =^%.
2 2 <\/x 2

71

y/xn^
'
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83. Differential of log y. Let y be any function of any

variable. Increase the variable by h, and denote, by k the corres-

ponding increment of y.

Applying the general rule, § 53, we have, since h and k vanish

together,

r log(?+*Mog.r -l limit [
WP^] ] = limit r

i0g
(
I+

|) ] ;

L k J km->0 L k J &m->0 L k J

which, placing £=y*i> equals Iimit
n
r
log(l+;;?

)l =

Hence, —~^ = — ,• and d log y=M —^-

.

^7 y y
That is, //z<? differential of the logarithm of any function is equal

to the modulus of the system into the differential of the function divided

by the function.

In the Napierian system, M=i, and d loge
y— —

.

84. Differential of ax. Let a be any constant, and x any
variable. Increasing x by h, and applying the general rule, § 53,

we have

limit r ^+h-^ l _ limit
r ^-il _

h-w^oi. h J ^^^oL h \~

Hence, -^- =ax loge a; and dax=ax loge a dx.
dx

That is, M* differential of any exponentialfunction with a constant

base is equal to the product of the function , the Napierian logarithm of

the base, and the differential of the exponent.

If a=e, the base of the Napierian system, we have dex=exdx.

85. Differential of y
z
, in which y and z are functions of the

same variable.

Let u—y7
-; then loge u=z loge y; and, § 78,

du dy
,

, 7- =*j + logeydz.
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Hence, du= dyz=zyz~1dy-\-yz loge _>' dz, which is the sum of the

differentials obtained by applying; first, the rule in § 81; then, that

in § 84.

86. Logarithmic Differentiation. The differentiation of an

exponential function, or one involving a product or quotient, is

frequently simplified by first taking the Napierian logarithm of the

function as above.

EXAMPLES.

I . u=xx
. dti=x* (i-f- loge x) dx.

dtc—x** x* \oge x(loge x+i)+ ~ dx.

11=
a/ i-\-x dx

du— —-

/sj\—x (i

—

x)<\/l X 2

i_ l~2x

4. M=X*. du=X * (i loge x)dx.

5. u= W-i) 5 _ loge «=| loge (x-i)-f loge
(x-2)-l loge Cr-3),

\/(x-2)* \/(x-3y
du _s dx 3 dx 7 _dx yx 2 -{- 30X—97 dx
u 2 x— I 4 x—2 3 x—3 12 (x—1) (x—2) (x—3)

du=
(x—1)^(7^2+ 30-^—97) dx

7 10.

12 (x—2)
¥ (x—3)

3

87. d sin <p= cos <p d <p. For, if cp be increased by A cp, we

shall have, § 53, § 34,

d sin cp_ limit [~sin (<p+ A <p)— sin cp~\ _ ximit 2 sin —£- cos y <?+ -g-^/ _
dcp ~ A <p»»-»0 L A <p J

_
A <p^^0

1^
A cp

limit
. Acp
sm^- cos ( <p+
Acp

cos 9?.

In a similar manner, by applying the general rule, § 53, the

differential of any trigonometric function may be determined; but

it is perhaps simpler to make use of the relations existing between

the functions.

d cos cp = — sin cpd cp. For, d cos cp = d sin ( ^— cp ) =

= cos y— — <pjdy——<Pj = — sin cp d cp.
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d cp

dtan(7?=
CQS a = sec 2 cpdcp=(i+tan 2 cp)dcp. For, d tan cp=d

_ cos q)d sin <£>— sin <pd cos cp _ (cos 2 cp + sin 2
) </<p a7 ^

cos 2 cp cos 3 c>
~~

cos 2 o

sm <y>

cos <p

d cp

d cot cp=—
sin 3

a?
~— zosec 2 cp dcp=— (i+ cot 2 cp) dcp. For, dcotcp=

d
(i-9») ^

=</tan (*-?>)
cos ! (;-*)

sm 2©

sin cp dcp
d sec cp=tan cp sec cpdcp. For, dscc cp=d—- —^ -r 7- 7- 7-

COS <£> COS <£>

= tan <p sec cp dcp.

d cosec cp —— cot cp cosec cp dcp. For, d cosec cp=d sec (- — <£> )
=

= tan (
- —cp ) sec ( - — cp

J
d I - — cp ) =— cot cp cosec cpdcp.

d versin cp= sincpdcp. For, ^/versin cp=d(i—cos<p)=sin cpdcp.

d coversin<p =— cos cpdcp. For, <^covers<p^^vers (
- — cp) =

= sin {~
2
—cp)d(^ — cp)=— cos cpdcp.

In order to illustrate the formulas

for the differentials of the sin and

cos of any angle, let AC£=cp, be

any given angle. Assume £CN=dcp,
and with any radius, as CO=JR,
describe an arc, as OMN.

Then,

PM CP
~n =sin<p, -jt — cos cp, arc MN=Rdcp.

The definition of a differential,

§ 63, in this case, requires that the

sin cp and cos cp, retaining their rates at the states corresponding

to cp=ACB, shall continue to change from those states while cp

increases by the angle P?CJV=d<p.

Draw the tangent line to the arc at Mj and lay off MT equal

to the arc MN—Rdcp. Through T draw TQ parallel to MP,
and through M, draw MQ parallel to OC.
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Then, QT and —MQ are, respectively, the changes that the

lines PM and CP would undergo were they to continue to change,

with the rates they have when cp=ACB, while cp increases by dcp.

OT MO
Hence, —

-
, and ~ are, respectively, the changes that the

A R
sin and cos of cp would undergo under the same requirements.

The angle MTQ=cp. Hence,

QT= MT cos cp — R cos cpdcp, and

MQ =MT sin cp = R sin cp d cp, and

QT
-7T = ^sin <p = cos cpd q>.

MQ
o = dcos q> = — sin cp d cp.

In a similar manner let the student illustrate the formulas for

the differentials of the other trigonometric functions.

B/

88. Regarding the right lines

PM, CP, OE, O'B, etc., as functions

of the variable angle cp, we have

E

/V p

\M

A

dRAf=dR sin (p—R cos <pd(p.

Rdcp
dOE-dR tan <p--

cos-cp

d CP=dR cos cp=—R sin

Rdcp
dO'B=dRcotcp--

d CE=dR sec cp—R tan cp sec cpdcp.

JOP=dR vers q>—R sin cpdcp.

SWi'Cp

d CB=Rd cosec cp=—

A

3
cot <pcosec cpdcp.

dO'Q=dR covers cp=—R cos cpdcp.

It is important to notice the difference between the differentials

of the above lines, which depend upon the radius of the circle used,

and the differentials of the trigonometric functions which do not

depend upon any radius or circle.

i. j>'=loge (sin cp). dy=

Examples.

d sin cp cos cpdcp

sin cp sin cp

2. y—loge 's/a
2—x 8

.

3. y=enx
. e = base Napierian system

:cot (p dcp.

xdx

a-—x-

dy=nenxdx.
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4. J—loge tan -%-. dy=

dcp

d tan^2- 2 cos 2^?-

tan£ tan %-

dcp

sin ^»

5. Assuming dcp—

d sin «p:
Vs

we have, corresponding to cp= t

it

d cot cp=—7t.

6. Corresponding to 9)=

d sin ^>

dcp

dcot cp

dcp

1

~w
= —4-

dcos cp=—
Tt

dsec cp- 7 .

n
- , we have
4

d cos cp__ 1

d sec <p ,—

a?tan <p=

^ cosec <p
VF

*/tan 9?

dcp

d cosec <p

=4-

=— V2-

z/ =
sinmx

cos"*'

dfo .T. COS.T

dcp dcp

r sin x ~|

du=x smx
I cos* loge*+ <&.

.
'. log

e
w=//z log6 sin *

—

n loge cos */ and

m m~ 1x «sin in+ 1
jr"

-1

9. y — sin^,

10. jj/=sin 3
<p,

II. J=COS 2
<£>,

12. _j/= cos 3
<p,

13. 7= tan 2
<p,

14. j= tan 3 cp,

15. y — COt* cp,

16. jy^cot 3
^,

17. y '= sec^cp,

18. y = sec 3 cp,

I9 . y = cosec s
(p,

20. y= cosec 3 cp,

21. y = versin 2
<p,

22. y = versin 3
£>,

23. y = covers 2 cp,

24. y= covers 3 cp,

7 . 7 I lit Sill
dx . . du=

|_ cos n~ xx ' cos n_

dy = 2 sin cp cos cpdcp.

dy = 3 sin 2 cp cos cpdcp.

dy =— 2 cos cp sin cpdcp.

dy =—3 cos 2 <psin cpdcp.

dcp
^j/ = 2 tan <p

d£j/= 3 tan 3
<p

dcp

cos 2
<p

'

dcp

sm'cp

dcp

dy =— 2 cot 93

dy=— 3 cot 2
<z>

dy = 2 sec cp tan cp sec cpdcp:

dy= 3 sec 2
<p tan 93 sec cpdcp.

dy=— 2 cosec 9) cot cp cosec cpdcp.

dy =— 3 cosec 8
<p cot (p cosec cpdcp

dy = 2 versin 9) sin cpdcp.

dy = 3 versin 2 cp sin cpdcp.

dy=— 2 covers 95 cos cpdcp.

dy=— 3 covers 2
^? cos cpdcp.
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du
,RQ i°. dsin_1u= — . . Let <p=s\n-'i zi; then tt— sm<p, and

".**• V 1—113

tf« ^(p I \
-j— = cos cp. Hence, S 73, —7- — =

, / r-^— =
dcp ^ ' '•*" du cos cp ±yi—sin 2

<p

1 du= . > or ^/<p =:^sin
_1 ?^= "^jj

—
,±yi—z*

2 ^V 1—

^

:

—du /7T \ —</«
2°. dcos~ 1u=—

,

For dcos~ 1u=d[ -—sin
-1

?* I — .

->

\/l—U 2 V2 / ^/i—U*

du
3 . d tan_1u= TZTTTT • Let q)=ta.n~ 1 u; then z*=tan<£>, and

du 1 <f<p I

~T~ — iTT" Hence, S 73, "-7- = cos 2
<p
= r— =

aT<p cos^<£> ' ° /J
' ^ * sec^tp

1 1 d^=———5— — T ,
o , or dcp=dta.n~ x u= —;

—

:> .

i+tan-<p i+ u~ ' ^
i+ z^

—du /7zr \ —du
4°. d cot^u^ I+lia

. For, ^/cor 1 «=*? ^-—tan"1^ = ^-p^-2
*

du
5 . d sec_1u= . Let <p=sec x u; then u=seccp, and

uyu 2—

1

<fo ^ 1
3— =sec<p tan<z>. Hence, s> 73,

-7—— 7 —
</<p

v v- > s /J' ^ sec(ptan<p

1
; , , ,

^
.

~=
, ', or dcp=zdsec~ 1u=

sec^Y 5602 *?5
— x ^v^ S—I u^/u'4—1

—du /7T \
6°. dcosec_1u= , For dcosec~ xu=d (

- —sec~ 1 z^) =
u/y/u 2—

I

\2 /
—du

u<yzc~—

I

du

7 . d versin~ 1u= ~~~7
2

• Let <p=versin x u; then u— versing,
<y/ 2U—U"

dfo </<p I I
x

and -j— = sin <p. Hence, § 73,dcp r\ ,v,so, du sin(p v/
I_cosa^

/y/i—(1—versep) 8
^J 2 vers cp—vers 2

<p ^2u—u 2, *

du
or dcp=dvers~ 1u= <— ,

=-
y2«—

w

3

*The sign depends upon that of cos cp. The formula is generally written

with the plus sign only, which corresponds to angles ending in the I
st or 4

th

quadrants.

Formulas 2°, 5 , 6°, 7 and 8°, also involve the double sign, but are generally

written as indicated above. 2°, 5 and 7 , as given, correspond to angles ending in

the i
3t or 2nd quadrants; and 6° and 8° correspond to angles ending in the I

st or

4
th quadrants.
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—du—du /it \
d covers 1 u=— . For ^covers-1 u=d I

——vers -1 ?* )
=

V2U-U 2 \2 /

-du

V*

90. Regarding cp as a function

of the line .PJ/, denoted by y, we

have ^=sin-1 ^-. Hence,

d <p:

R dy

Similarly, having CP=y

Similarly, having OE=y

Similarly, having 0'B=y

Similarly, having CE=y,

Similarly, having CB=y,

Similarly, having PO —y .'. <p = versin

Similarly, having 0'Q=y,

—dy
cp= 'co$, — , we have d<p=

yR*—y %

-1 y Rdy
<p=tan -77, we have dcp— ^ a _j_ 2

<p=cot ^-, we have d<p=

m=sec J- , we have dcp—
R ^

-Rdy

R*+y>

Rdv

y<s/y*—R*

-l v
—Rdy

<z>=cosec — , we have dcp= -,

R ^ yyyX—R 2

R
we have dcp =

dy

<Z) = coversin — , we have dcp —
R

\/2Ry—y'i

-dv

\/ 2Ry—y'i

Y

4-14'
d#

M
R'

Xf P Ax P R

9 1 . Differential of an Arc of a Plane

Curve. Let s represent the length of a

varying portion of any plane curve in the

plane XY. It will be a function of one

independent variable only, § 19, which we

may take to be x.

Assume any point of the curve, as M,
and increase the corresponding value of

x=OP, by PjP'ax. As=MM' will be

the corresponding increment of s.
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Then, § 37,

d± __ limit [AJl _ 1
.

dx Ax^-^Ola^J cos R'M

T

dr
Assume PR=dx. Then, § 63, R'T—dy, and cos R'MT=-^
Substituting in above,

ds MT
dx dx

MT=ds=/v/dx 2+ dy 3

The double sign is omitted because s may always be considered as an

increasing function of x.

That is, the differential of an arc of a plane curve is equal to the

square root of the sum of the squares of the differentials of the coordi-

nates of its extreme point.

If s were to change from its state corresponding to any point,

as- M, with its rate at that state unchanged, the generatrix would

move upon the tangent line at Mj hence, MT= ^/dx 2 +dy2

represents ds in direction and measure.

In order to express ds in 'terms of x and dx only, substitute

for dy its expression in terms of x and dx determined from the

equation of the curve.

Similarly, ds may be expressed in terms of y and dy only.

Thus, let s be an arc of the circle whose equation is x2
-\-y

2=4.

Solving with respect to y, and differentiating, we have

xdx
dy= T

V4—x

•x<

tt j A / x2dx* 2dx
A ds 2

Hence. d^\/ dt,+—— =^= t
and _ = ^=

(t) — (7) =- (t) =-
\dx/cc=—2 \dx/x=0 \dx/x=2

* The square of the differential of a variable represented by a single letter, is

generally written as indicated in the above formula; and is similar in form to the

symbol for the differential of the square of the variable.

Similarly, the n th power of the dx is generally written dxn .

A knowledge of the formula, and of the associated symbols, removes the

ambiguity in such cases.
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That is, at the points where the circum. cuts X the rate of s

with respect to x is infinity; while at the points where it intersects

Y its rate is the same as that of x.

92. Differential of

any Arc. Let s represent

the length of a varying

portion of any curve in

space. It will be a func-

tion of one independent

variable only, § 19, which

we may assume to be x.

Through any assumed

point of the curve, as M,
draw the ordinate MJV;
and through JV, the point

where it pierces XY, draw NP parallel to Y. OP will be the

value of x corresponding to M. Increase x=OP by PP'=Ax,
and through P' pass a plane parallel to YZ, intersecting the given

curve at M' . As— arc MM' will be the increment of s correspond-

ing to the assumed increment of x.

Draw the chord MM' and the ordinate M'K. Through M
draw MQ' parallel to a right line drawn through N and K; and

through N draw NN' parallel to X. Then, N'K=&y, and

Q'M'= Az, will be the increments of y and z corresponding to

Ax; and we have chord MM'=^/(&x)*+(Ay)* + (Az)*.

Hence, § 31, Theorem X.

ds_

dx
limit

Axn->
it farcMM '-l ^ Hl

>->0 L Ax J Ax
lj ni il

rchor&MM'
0 L Ax

_ limit VV(Ax) s+(Ayy {AzY
]

limit

A x »»-»io^+m°+m
\fI+ fdlY + ^V; hence, ds^V^x^dy^dz 2

.
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In the above deduction s may be a curve of single, or of double

curvature. The increment As may, or may not, lie in the project-

ing plane of the chord MM'

.

If not, the projection of the chord MM' on the plane XY will

change direction as Ax approaches zero, but the above relations

will not be affected thereby.

93. Differential of a Plane Area.

Let u represent the area of the plane

surface included between any varying

portion of any plane curve, as AM, the

ordinates of its extremities, and the axis

of X.

Regarding u as a function of #,'§ 21; let x=QP', be increased

by P'P"= Ax. P'MM"P" will be the corresponding increment

of u. Hence, § $&,

du

dx
limit f P'MM"P"

Ax -y- du=y dx*.

That is, the differential of a plane area is equal to the ordinate of

the extreme point of the bounding curve into the differential of the

abscissa.

To illustrate, let u represent the area

BAMP, and PR—dx- then du= ydx=
rect. PQ, which fulfils the requirements

of the definition of a differential, § 63.

Similarly, it may be shown that xdy is

the differential of the plane area included

between any arc, the abscissas of its

extremities, and the axis of Y.

In case the coordinate axes are inclined to each other by an

angle 6, we have ^z/^sin 0dx, or du=x s'm 6dy.

*It is important to notice and remember that ydx is the differential of a plane

area bounded as described; and that it is not, in general, the differential of a plane

area otherwise bounded.
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In order to express du in terms of x and d x, substitute for y,
or dy, its expression determined from the equation of the bounding
curve.

Thus, if a2

y
2
-\-b

2x2= a2o2
is the equation of the bounding curve,

and du.we have y— - ^/a a—
; aV"'~x2 dx.

94. Differential of a Surface of Revo-

lution. Let the axis of X coincide with

the axis of revolution; and let PM=s, be

any varying portion of the meridian curve

in the plane XY, Through M draw the

tangent MT, the ordinate MP, and the

right line MR' parallel to X. Let u

represent the surface generated by s; and
i regarding it as a function of x, § 23, let

x — OP be increased by PP'=Ax.
MM'— &s, will be the corresponding increment of s; and the

surface generated by it will be the increment of the function u

corresponding to A^. Hence, § 39,

^
r xC dy

>^~HM
R'

r P AX P R X

du _ um it
T sur. gen. by arc MM' "1

dx Axi->0 L Ax J

1Tt\>

cos R'MT-

Assume PP=dxj then R'T—dy, MT—ds, and cos R'MT-
Substituting this expression for cos R'MT in above, we have

du 2 ity ds

dx dx
and du= 2 7ry ds=2 7ry\/dx 2 +dy 3

Hence, the differential of a surface of revolution is equal to the

product of the circum. of a circle perpendicular to the axis and the

differential of the arc of the generating curve.

Similarly, it may be shown that 27tx*
sJdx % +dy i is the differential

of a surface of revolution generated by revolving a plane curve

about the axis of Y.

In order to express du in terms of a single variable and its

differential, find expressions for y and dy in terms of x and dx,

or of dx in terms of y and dy, from the equation of the generating

curve; and substitute them in the formula.
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Thus, if y
2—2px is the equation of the generating curve, we

have v=vV* and dy-
pdx

V'2pX
Hence,

dl(= 2 7T^/^\/dx2+tl^ =2 7t {2px+f) %dx
2pX

95. Differential of a Volume of

Revolution. Let the axis of X coin-

cide with the axis of revolution; and

let BM be any varying portion of the

meridian curve in the plane XY.
Through M draw the ordinate MP,
and the right line MQ' parallel to X.

Let v represent the volume generated by the plane surface

included between the arc BM, the ordinates of its extremities, and

the axis of X. Regarding v as a function of x, § 27, let x be

increased by PP'= Ax. The volume generated by the plane

surface PMM'P' will be the corresponding increment of the

function v.

Then, § 40,

dv limit ["vol. gen. by PMM'P'~\

Hence, the differential of a volume of revolution is equal to the area

of a circle perpendicular to the axis into the differential of the abscissa

of the meridian curve.

Similarly, it may be shown that 7rx2dy is the differential of a

volume of revolution generated by revolving a plane surface about

the axis of Y.

In order to express dv in terms of a single variable and its

differential, determine an expression for y in terms of x, or of dx

in terms of y and dy, from the equation of the meridian curve; and

substitute them in the formula.

Thus, if ^2
-|->'

2—2^?jc=0 is the equation of the meridian curve,

we have dv—7t (2 Px—x2
) dx; or since

dx= ydy
dv—

ity zdy

\/y 2+x 2
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96. Differential of an Arc of

a Plane Curve in terms of Polar

Coordinates. Let r—f{v) be the

polar equation of any plane curve,

as BMM', referred to the fixed

right line PD, and the pole P.

Let BM—s, be any varying por-

tion of the curve, and PM=r,
the radius vector corresponding

to M. Regarding s as a func-

tion of v, §19, let v be increased

by MP M'—Av. The arc

MM'= as will be the corres-

ponding increment of s. With P
as a centre, and PM as a radius,

describe the arc MQ f
. Denote PM* by r'j then Q'M'=r'—r,

will be the increment of r corresponding to A v. Through M
draw the tangent MT, and the chords MM' and MQ'

.

Then, § 41, we have

(i
i__ limit

dv A v ^->0

Hence,

MM _
J

_ limit \/(r '—r\a

J A^s^oV \ AV )

ds=\/dr 2 +r adv a
.

-f-r* -V' +r'

If the radius vector PM coincides

with the normal to the curve at M, the

corresponding tangent to the arc MQ'
will coincide with MT; and § 41,

ds _ limit r&rcMM' -l
. .

-7- —
A „ =.r, givmg as= razz.

dv Avm-^Q L A^ J & fe

In this case dr=0, because the

motion of the generatrix at the point

considered is perpendicular to the radius

vector.

Since the radius of a circle is always normal to the arc, the

differential of an arc of a circle regarded as a function of the corres-

p07iding angle at the centre, is equal to its radius into the differential of

the angle.
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Let BM=s, be an arc of a circle

subtending the angle BCM~v.
Assume MCQ—dv; then will the arc

MQ—rdv. The direction of the

motion of the generatrix at any point,

is along the corresponding tangent

to s; hence, by laying off from M,
upon the tangent at that point, a

distance equal to ds=a.vc AfQ=rdv,

we have ds represented in measure and direction.

In order to represent ds in the

general case, let BM be the given

curve, P the pole, M the assumed

point, and MPM'— dv. If r

were constant, as we have seen

in the case of a circle, MT'^rdv
would be ds- but, in general, ds

is affected by a uniform change in

r, in the direction BM, equal to

dr. To determine it, we have

dr_

dv
limit

Avm-^>
[
Q'M' 1_ limit r Q'M' -1

At T' draw T'T parallel to BM; then i—L = tanT 'MT=—

•

T'M rdv

Hence, ~=r—— = —— , and dr—T'T.
dv rdv dv

Hence, M T=ds= ^/dr^+r^dv2
, represents ds in measure and

direction.

In order to express ds in terms of a single variable and its

differential, find expressions for r and dr in terms of v and dv,

or an expression for dv in terms of r and dr, from the polar equa-

tion of the curve: and substitute in the formula.
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97. Differential of a Plane

Area in terms of Polar Coordi-

nates. Let u represent the area-

of a varying portion of the surface

generated by the radius vector

PM revolving about the pole P.

Regarding u as a function of v,

B § 22, let MPMf— av. The area

MPM' , represented by A u, will be the corresponding increment

of u.

Hence, § 42,

du

dv
limit

Az>»»-»0
—- = — ; and du=LawJ 2

r 2dv

2 *

describe the arc of a circle

dv

To illustrate, with PM-
MQ-^rdv corresponding to MPQ=dv; then du—'— = area of

the circular sector MPQ.
du may be expressed in terms of v and dv, by substituting for

r its value in terms of v, determined from the polar equation of the

bounding curve.

Problems in Rates.

1. Having j2=5/ 3
, find the velocity and acceleration when t=2 seconds;

/ = 3 seconds.

2. Find the angles that a tangent to the curve x s=6/2+ 3jK+i, at the point

(8', 3), makes with the axes X and Y, respectively.

3. Find the rate of change of ( \/ x + —^ ) when x = 3.

4. Find the angles that a tangent to the curve y=logx, at the point (1, o)

makes with the coordinate axes respectively.

5. Find the rate of change of the ordinate of a circle with respect to the

abscissa.

6. Same of an ellipse.

7. Same of a parabola.

8. Same of an hyperbola.

9. At what rate does the. volume of a cube change with respect to the

length of an edge?
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10. Find the rate of change of a logarithm in the common system when the

number is 12.

11. Same for the numbers ^, ^, 157, 3227.

12. The area of a circle is increasing 5 sq. ft. a second; find the rate per

second of its radius when the radius is 3 feet.

12. The side of a square is increasing 3 in. a minute; find the rate per

minute of its area.

14. The relation between the time denoted by t ; and the distance, repre-

sented by s, through which a body, starting from rest, falls in a vacuum near the

earth's surface, is expressed, very nearly, by the equation s=i6.i t~; s being in

feet and t in seconds. Construct a table giving, the entire distance fallen through

in 1 second; in 2 seconds; in 3 seconds; and in 4 seconds; the distance passed over

during each of the above seconds: the velocity and acceleration at the end of each.

Time in

Seconds.

Entire Distance

in Feet.

Distance each

Second.
Velocity.

Accelera-

tion.

1 16.

1

16.I 32.2 32.2

2 64.4 4S.3 64.4 32.2

3 144.9 80.5 96.6 32.2

4 257.6 112.

7

128.8 32.2

The following general outline of steps may assist the student in solving

problems involving rates.

i°. Draw a figure representing the magnitudes and directions under consid-

eration; and denote the variable parts by the final letters of the alphabet.

2°. Following the word given, write, with the proper symbols, all known

data; and after the word required indicate the symbols for the required rates.

3 . From the relations between the magnitudes, find an expression for the

function whose rate is required, in terms of the variable.

4°. Differentiate and determine values or expressions for the required rates.

In case an explicit function of a variable cannot be found, make use of the

principles in § 74.

15*. A man 6 feet in height, walks away from a light 10 feet above the

ground, at the rate of 3 mi. per hour. At what rate is the end of his shadow mov-

ing, and at what rate does his shadow increase in length ?

* Examples 15 to 22 are from Rice and Johnson's Calculus.
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Let x=AM=distance from foot

of light to man.

Let y=AB=:dista.nce from foot

of light to end of shadow.

Let s=MB=- length of shadow.

hr.

M 3 Let *=:time in hr

Given.
AL=ioit., MC^bit , Z>Z^4 ft.,

dx i

dy
Required, -77 , and

ds

dr

From similar triangles,

y: xv. 10: 4, •'• v= ~ x, and" 2 dx 2

dy dy dx
§74, di

:=
dx

X
d7

5 w 3 mi.
1
mi.

~
2
X

hr. ~ 7* hr.
'

s: x:: 6: 4, j= ~ x, and
2

afr _ 3

dx ~ 2
'

*& aft *£r 3 mi. mi.- = -X- = ^X3^=4^
dt dx dt hr. hr.

16. A vessel sailing south at the rate of 8 mi. per hour, is 20 mi. north of a

vessel sailing east at the rate of 10 mi. an hour. At what rate are they separating

at the time ? at the end of 1^ hrs. ? at the end of 2\ hrs. ? When are they neither

separating from nor approaching each other?

Let t— time in hours from the given epoch.

Let AB—y=20—8 /—distance of I
st ship from BC

t hours after the given epoch.

/du\

\dt) t=0
=

Let BC=x=iofc
the same time.

distance of 2nd ship from BA at

Let u=AC=\/x :i +y''s = y^oo—320/+i64/ s
.

dy
Given, -^ = -

du
Required, -77 —

mi.

hr7

dx mi.

dt hr.

—160+164 t

y^oo—320 /+164 t
s

mi.

hrT

'du\ I mi.

^dt)t=\\~^ 17 hr - (£)<=**
=°-

* ^ hr~
mcucates 3 m i- Per nour -
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17. The rate of increase of a side of an equilateral triangle is )/z inch per

second, find the rate of its altitude per second. If the rate of a side is 3 feet per

second, find the rate per second of the area when the side is 10 ft.

iS. A man walks on a straight line, 5 ft. per second. How fast does he

approach a point 120 ft. from his path in a perpendicular to it, when he is 50 ft.

from the foot of the perpendicular ? , 2 ft.
1jy

sec.

19. A ladder 25 ft. in length leans against a wall; the bottom is drawn out

2 feet per second, at what rate is the top descending when the bottom is 7 ft. from

the wall? in.

sec.

20. Two locomotives are moving along two straight railways which intersect

at an angle of 6o°; one approaches the intersection at 25 miles per hour, and the

other is leaving it at the rate of 30 miles an hour, find rate per hour at which they

are separating from each other when each is 10 miles from the intersection.

„i mi.

hr.

21. A street crossing is 10 ft. from a lamp situated directly over the curb-

stone, which is 60 ft. from walls of opposite buildings. If a man walks across to

opposite side at the rate of 4 miles per hour, at what rate per hour will his shadow

move upon the walls when he is 5 ft. from the curbstone ? When he is 20 ft.

from the curbstone ? , mi. A mi.
06 6 •

hr. hr.

22. The radius of a sphere is decreasing 2 in. per second; find the rate of

its surface, and volume.

23. In the parabola y s =gx, find the rate of y with respect to x when ar=4.

What value will x have when rate of y equals that of x? When rate of y is the

greatest ? When the least ?

24*. A boy is running on a horizontal plane towards the foot of a tower

60 ft. in height. How much faster is he approaching the foot than the top of the

tower ? How far is he from the foot when he is approaching it twice as fast as he

is the top ? At 100 feet from foot, how much faster is he approaching it than the

top?

25. x 2=2pz is the equation of a parabola OM.
A point starting from 0, moves along the curve in such

a manner that 2=16.1 1~; in which z is expressed in

ft., and t in seconds. Find the rate of x with respect

to t.

Given,

dx P P . dz— = —;-;:zr=

—

t~ — = 32.2/,
dz V2/2 y32.2// dt

* From Olney's Calculus.
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dx
Required, -,-

dx dx dzax ax az r /—— = — X — = / —X 32. 2 ^=^32.2/.
dt dz dt V32.2//

2

26. One ship was sailing south at 6 -—- , another east at 8—l . At 4 P. M

.

hr. hr.

the second crossed the tracks of the first at a point where the first was 2 hrs. before.

How was the distance between the ships changing at 3 P. M. ? When was the

distance between them not changing ?

27. A ship is sailing south 6o° east, 8-—^
; find the rate of her latitude and

hr.

longitude.

28. A point P moves in a straight line away from a point B at the rate of

g—- ; find its velocity with respect to a point C situated upon the perpendicular
hr.

to the line BP through B and at 100 ft. from B, when BP=$o ft. when

BP= 1 50 ft.

29. If a circular plate of metal expands by heat so that its diameter increases

uniformly at the rate of T^ of an inch per second, at what rate is its surface

increasing when the diameter is 2 inches? 7r sq. in.

100 sec.

30. If the diameter of a sphere increaseSuniformly at the rate of y¥ inches

per second, what is its diameter when the volume is increasing at the rate of 5 cubic

inches per second ? 10
—y=r in.

V 7t

31. If the diameter D of the base of a cone increases uniformly at the

rate of -^ inch per second, at what rate is its volume increasing when D becomes

10 inches, the height being constantly one foot? cu. in.

sec.

32*. Water is poured into a conical glass, 3 inches in height, at a uniform

rate, filling the glass in 8 seconds. At what rate is the surface rising at the end of

1 second ? At what rate when the surface reaches the brim ? t in. , in.

sec. sec.

33. A train is running from A to B at the

rate of 20 mi. an hour. The distance from A to C,

on a perpendicular to A B, is two mi. Find the rate

of the angle at C included between C A and a right

line from C to the train.

Let cp= variable angle at C.

" y= distance from A to train.

Given. CA=2mu, ^=20— .

dt hr.

* Rice and Johnson's Calculus.
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Required.
d<p

~dt-

cp .*. (£>=tan -1 JL
CA and

^/ cp CA 2

y=CA tan
' AX:

2
+y 2 ~4+rJ

d(p

~dl

dcp

-~dy
dy 2

X 2°= 40 ,

4+7 34-rj 2

\ dt Jy=Q
= 10.

1 V dt Jy:,2= 5 -

V dt ) y-_
=0.

=00

The unit of measure of cp is a radian.

34. In a right plane triangle one side adjacent to the right angle is

constant and 4 mi. in length ; the other side adjacent to the right angle, denoted

by y, is variable. Let cp represent the angle opposite y. Find the rate of cp
;

first, when <p=f(y); also, when <p —I^Xtan cp), corresponding to j=2miM and

explain the difference between the two results.

Let ti=tang>= ^— —
-_
<- •

^ 4

Rdy [dcp \ 1 du (dq> \ 4.

5

cp changes less rapidly with respect to y than it does with respect to u, because y
changes 4 times as fast as u.

35. Determine the manner in which the sin of an angle varies with the angle.

d€\xv (p dr— = cos <p=rate:=r, — — — sin <p.

dcp dcp

As cp increases from to - , the rate is +, but diminishing. Hence, the
2

sin increases, but its increments decrease.

it
From - to 7C, the rate is — , and diminishing. Hence, the sin diminishes and

2

its decrements increases numerically.

"X it
From 7t to -— , the rate is— , and increasing. That is, the sin decreases,

2 \

but its decrements diminish numerically.

o ft
From -— to 2 tt, the rate is +, and increasing. That is, the sin increases,

2

and its increments increase.

In a similar manner determine the circumstances of change of each trigono-

metric function, with respect to the angle.

36. Determine the rate of change of the tangent, regarded as a function of

the sine of an angle.
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Same of the sin as a function of the cos.

Same of the sin as a function of the sec.

Same of the cos as a function of the cot.

Same of the cos as a function of the cosec.

Same of the tan as a function of the sec.

Same of the tan as a function of the versin.

Same of the cosec. as a function of the covers.

Same of the sec as a function of the vers.

37*. Two points start together from an extremity of a diameter of a circle

whose radius is 150 feet. One point moves uniformly along the diameter at the

rate of 5 ft. per second ; the other moves in the circum. and is always in the

perpendicular to the diameter through the first point. Find the velocity of the

second point when the angle subtended by the arc described by it is 45 .

38*. Two points start as in above example ; one moving uniformly along

the tangent at the rate of 10 ft. per second and the other in the circum. so as to be

always in the right line joining the first with the centre of the circle. Find the

velocity of the second when passing the 45 point.

* From Bowser's Calculus.



CHAPTER VI.

DIFFERENTIATION OF FUNCTIONS OF TWO OR MORE
VARIABLES.

98. The Partial Differential of a Function of Two or more

Variables, with respect to one of the variables, is the change that

the function would undergo from any state, were it to retain its rate

at that state, with respect to that variable, while that variable

changed by its differential.

The Total Differential of a Function of Two Variables is the

change that the function would undergo from any state, were it to

retain its rate at that state, with respect to each variable, while both

variables changed by their differentials.

Any function of two variables which changes uniformly with

each variable, has a constant rate with respect to each, and its form

must be some particular case of the general expression Ax-\-By-\-C,

S 59-

Representing such a function by z, we have

z=Ax+By+C .... (i).

Increasing x and y by their differentials, and denoting the

corresponding new state of the function by z', we have

z'=A(x+dx)+B(y+dy)+C .... (2).

Subtracting (1) from (2), member from member, we have

z'—z=Adx+Bdy.

Since the function z changes uniformly with respect to each

variable, the total differential of it, denoted by dz, is equal to the

corresponding change in the function.

Therefore, dz=Adx-\-Bdy.

Adx is the corresponding partial differential of the function z

with respect to x; and Bdy is the same with respect to y.
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Hence, the total differential of any function of two variables, which

changes uniformly with respect to each, is equal to the sum of the corre-

sponding partial dijfere?itials

.

The total differential of any function of two variables which

does not vary uniformly with each variable, is not, in general, the

corresponding change in the function, but it is the corresponding

change of a function having a constant rate with respect to each

variable, equal to that of the given function at the state considered.

In other words, the total differential is equal to that of a function

which changes uniformly with each variable, and which has at the

state considered its partial differentials equal to the corresponding

partial differentials of the given function.

Hence, the total differential of any function of two variables is

equal to the sum of the corresponding partial differentials.

That is, having z=f(x,y), then dz= -^ dx-\- -rdy.

In a similar manner it may be shown that, the total differential of

any function of any number of variables is equal to the sum of the

corresponding partial differentials.

Examples.

1

.

d (xy)=xdy+ydx.

2. d{^ax 2
y—2y

2 +3&xs—
5)= 6axydx-\-gl>x 2dx+ ^ax 2dy—4ydy.

(
x+y \ _ 2 {xdy—ydx)

3- d
\x_y ) ~ {jc_y)

z

4. d {x2y
2 z 2)=2y* z'dxdx+2x2z 2ydy+2x 2y 2 zdz.

/ y\ _ xdy—ydx

6. d [sin ixy)\—cos {xy) {ydx+xdy).

ydx
7

.

d loge {xr) =— + log e xdy.

( sin x dy \
8. dys{n x=ysin * I

\Qgey cosxdx+ )

*

ydx—xdy

y y<\/2 xy—x 2

10. d sin (.r+j)=cos (x+y) (dx+dy).
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II. 2=tan- 1
: y*+x'< Required— =

dx \a'1—x'2

dv x
12. u=y 2+x-—a 2 =0. Required du=0, and^ = — -'

dzt

+ I2JT 2—24.X+24. Required ~r =exx i

14. tt— sin
-1

{p
—

q), J>=3x, q=4x s
. Required — = .,

*

dx /y/i

—

xs

15. Deduce the formula ds= ydr 2 -\-r 2 dv'1
, § 95, from the formulas,

x=a+r cos v
\

.
—

-

y=b-\-rsmv \ LAnal - Geo -J; and ds—^/dx*+dy~, §90.

16. One side of a rectangle increases at the rate of 3 in. per second and the

other decreases at the rate of 2 in. per second. Find the rate of the area, when the

first side is 10 in. and the second 8 in. in length.

44 sq. in. per second.

Z

99. Let ATL be

any surface, and
AJ3CJD= u a portion

of it included between

the coordinate planes

XZ, YZ, and the
planes DQR BPS,
parallel to them re-

spectively. From § 25,

we have u= f(x,y).

Increase OP=x by

PP'=h giving, § 53,

d
Ji = limit Vf(x+h,y)—f{x^!)\
dx /im^>0 L h J

Now increase OQ—y by QQ''=&, giving, § 53,

•**"* = limit [i
dx dy km-^Q I

limit r/(3+ft,y+*)-/fo y+k)-[f(x+h, y)-f(x, y)] ~|

*R ,y 2 2/ {fit

is a symbol for the partial differential coefficient of — , taken with
dx dy

respect to y.

dx
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iu limit r— — h^-^o •

dv &s»-»o L

-f(x+h, y+k)-f{x,y+k)-{f{x+h,y)-f{x,y)-Y
dx dy fc^->0

In which,

f{x+h,y+k)-AEGI. f{x,y+k)=ABHI.

f(x+/i,y)=A£FD. f(x,y)=ABGD.

Hence,

f(x+ h, y+k)—f(x,y+k)=AEGI—ABHI =BEGH.

f (x+/i, y)—f{x, y)-AEFD—ABCD—BEFC.

f(jc+/i,y+£)—f(x,y+k)—[f(x+/i,y)—f(x,y)]=BEG/f—BEEC= CEG/f.

. d*u limit fCEGJ/1
Therefore, -j—j- = h »»-»o ——— .

dxdy jl'S^oL h k J

Let CF'G'H' (not drawn) be the portion of the tangent plane

to the surface at C included between the same planes that deter-

mine CF GJF, and let j3 represent the angle between the tangent

plane and XY.

Then CF'G'JF'xcosj3=NJ?MS=/ik,§43,orCF'G'J?'=-^'

From§ 44, we have k^o
[ cpGH j=I .

Hence § 31, Theorem X,

d*u limit f CF' G'ff'l limit |~—^1 1

dx dy Jc s»-»o L h k J Jc ^->0 I
j, % J cos p

, d 2u T 7 dxdy
and -j—-dxdy— £

ajf i/j/ T COS /J

The same formula may be deduced in a similar manner from the

figure without using the functional notation.

Thus, -^ =
7

limit —
-j
— . Increasing y by QQ'=&, we have

r Increment - / limit rJB CFIT]\-~\
d £u _ Hmit due to A;

ot U^<>L \
—

S)
dx dy k »»->0 I k

' ~
J

limit T Increment
ot
*CFBrv\ ^ CFGH^

T limit T Increment » 5 C.P^in .... „„
_ limit AS^oL due to *

of—^J _ ^ V£F_
k-^^Y_ *

J A»-»oL h

limit rCF' G' H' 1 limit ["-ALTI
z

A»»-»0 L h k J A^-»0| ~XF"J cos P
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100. Let ATL
be any surface, and

ABCJD—OJV=V
J
a

volume limited by it,

the three coordinate

planes, and the planes

DQR and BPS par-

allel,respectively,toXZ
and YZ. From § 28,

we have V=/(x,y).

By the method used

in the last Article, con-

sidering the corre-

sponding volumes in-

stead of the surfaces,

we obtain.

dxdy lc a»-»o L hk

In which,

f(xJr/i,y+k)-/(x,y^k)-[/(x+Aj)-/(x,y)]=volCFGJI-JV.M.

*}

Hence, § 45:
.-= h?»->0 \-

dx dy Jc m-X) L hk
1

-J
=NC=:

and -

—

-dx dy=z dxdy.
dx dy y
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